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Chapter 4

Continuity

Exercise 4.1 Suppose f is a real function defined on R! which satisfies

lim (£ +h) ~ f(z - k)] =0

for every z € R'. Does this imply that f is continuous?
Solution. No. In fact even the stronger statement

o L@+ ) = £z~ h)

h—0 h™ =0

for every z € R!, where n is an arbitrary positive number, does not imply that
[ 1s continuous, since this property is possessed by the function

1 if z is an integer,
o) = {O if z is not an integer.

(If z is an integer, then f(z + A) — f (z ~ h) = 0 for all h; while if z is not an
integer, f(z + h) — f(z — h) = 0 for |h| < min(z — [z],1+ [z] — 2).

Exercise 4.2 If f is a continuous mapping of a metric space X into a metric
space Y, prove that '

f(E) C F(E)
for every set E C X. (E denotes the closure of E.) Show, by an example, that

f(E) can be a proper subset of f(E).

Solution. Let z € E. We need to show that f(z) € f(E). To this end,
let O be any neighborhood of f(z). Since f is continuous, f~!(O) contains
(is) a neighborhood of z. Since z € E, there is a point u of E in f~1(0).
Hence f(u) € ON f(E). Since O was any neighborhood of f(z), it follows that

f(z) € f(E).
. . 1 — 1 . = :E
Consider f : R' — R! given by f(z) 1122

that f(E) = f(E) = (0, 3], yet F(E) = [0,1].

and let F = F = [1, ), so
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Exercise 4.3 Let f be a continuous real function on a metri‘é space X. Let
Z(f) (the zero set of f) be the set of all p € X at which f(p) = 0. Prove that
Z(f) is closed. S

Solution. Z(f) = f~({0}), which is the inverse image of a closed set. Hence
Z(f) is closed. '

Exercise 4.4 Let f and g be continuous mappings of a metric space X into a
metric space Y, and let E be a dense subset of X. Prove that F(E) is dense
in f(X). If g(p) = f(p) for all p € E, prove that g(p) = f(p) for all p € X.
(In other words, a continuous mapping is determined by its values on a dense
subset of its domain.)

Solution. To prove that f(E) is dense in f(X), simply use Exercise 2 above:

HX) = f(E) C f(E).
The function ¢ : X — R given by

¢(p) = dy(f(p),9(p))

is continuous, since

ldy (£(p), 9(p)) — dv (£(a), 9(q))] < dy (f(p), F(@) +dy(9(p), 9(q)).

(This inequality follows from the triangle inequality, since

dY(J;(p), 9(p)) < dy (f(p), £(2)) +dv(£(q),9(q)) + dy(9(q9),9(p)),

and the same inequality holds with P and g interchanged. The absolute value
ldy (f (), 9(p)) — dv(£(q), 9(g))| must be either dy (f(p),9(p)) — dy(f(a), 9(q))
or dy(f(a),9(q)) — dy (f (), 9(p)), and the triangle inequality shows that both
of these numbers are at most dy (f(p), F(9)) + dy (9(p), 9(q)).)

By the previous problem, the zero set of ¢ is closed. But by definition

Z(p)=A{p: f(p) = g(p)}.

Hence the set of p for which f(p) = g(p) is closed. Since by hypothesis it is
dense, it must be X.

Exercise 4.5 If f is a real continuous function defined on a closed set E C R},
prove that there exist continuous real functions g on R! such that 9(z) = f(z)
for all z € E. (Such functions g are called continuous extensions of f from E to
R.) Show that the result becomes false if the word “closed” is omitted. Extend
the result to vector-valued functions. Hint: Let the graph of ¢ be a straight
line on each of the segments which constitute the complement of E (compare
Exercise 29, Chap. 2). The result remains true if B! is replaced by any metric
space, but the proof is not so simple.
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Solution. Following the hint, let the complement of E consist of a countable
collection of finite open intervals (ak,br) together with possibly one or both
of the the semi-infinite intervals (b,+00) and (—o0,a). The function f(z) is
already defined at a; and br, as well as at a and b (if these last two points
exist). Define g(z) to be f(b) for x > b and f(a) for z < a if @ and b exist. On
the interval (ag, bx) let

9(z) = flax) + bx_ak

br) — flak)).

k"ak(f( k) — flax))

Of course we let g(z) = f(z) for z € E. It is now fairly clear that 9(z) is
continuous. A rigorous proof proceeds as follows. Let ¢ > 0. To choose § > 0
such that |z — u| < & implies |g(z) — g(u)| < &, we consider three cases.

i. Ifz >0, let § =z —b. Then if |z — u| < §, it follows that u > b also,
so that g(u) = f(b) = g(z), and |g(u) — g(z)] = 0 < &. Similarly if z < a, let
§=a—r1.

u. If ap <z < by and f(a) = f(b), let 6§ = min(z — ay, b — z). Since
|z — u| < 6 implies a;, < u < by, so that 9(v) = flax) = f(bx) = g(z), we
again have |g(z) — g(u)] = 0 < e. Ifax < = < by, and flag) # f(be), let
(bk — ak)s

|f(bk) — f(ax)]

6 = min (x — akk, b — z, ) Then if | — u| < 8, we again have

ar < u < b and so

9() = 90)] = 1= {£(0) — f(as)] < e

tit. If z € F, let &1 be such that |f(u) — f(z)| < e if u € E and |z —ul < 6.

(Subcase a). If there are points z; € EN (z —61,z) and 22 € EN(z,z+61),

let 6 =min(z —x),20 —z). If ju—2| < 6 and u € E, then |f(u) - f(z)] < € by

definition of §;. if u ¢ E, then, since z1, T, and z; are all in E, it follows that

U € (ak,bg), where a;, € E, by, € E, and lar — z| < 6 and |br — 2| < 6, so that

- Ifar) = f(=2)] < € and |F(bs) - f(z)] <e. If f(ar) = f(bg), then f(u) = f(ax)
~also, and we have |f(u) — f(z)| <e. If f(ax) # f(bk), then

56 = 1@ = [f(ow) = )+ 22 (1(00) - f(aw)
k ag
bk —U U — ap
= e (@) = 1@) + o (£(b0) - £(2)|
bk - Y U —. ag
< b _aks-i- b _aks

= £

(Subcase b). Suppose z5 does not exist, ie., either £ = a; or z = g4
and by > ar+ ;. Let us consider the second of these cases and show how to
get [f(u) — f(z)] <eforz <u< z+6 If flag) = f(bg), let 6 = &;. If
u >z we have ax < u < bt and f(u) = f(ax) = f(z). If flax) # f(be), let 6§ =
min <6 (b — ax)e

1,

| | f(bx) — f(ar

)l> Then, just as in Subcase a, we have | f(u)— f(z)] < e.
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The case when = = b, for some k and ar < z — 67 is handled in exactly the
same way. :

If 2 =0, let § = 61. If u > z we have f(z) — f(w); and if u < z and u ¢ F,
we use the same argument as in Subcases a and b.

The case z = a is handled similarly.

- The extension of this result to vector-valued functions is immediate: Simply
- extend each component of the function. A vector-valued function is continuous
if and only if each of its components is continuous.

Exercise 4.6 If f is defined on E, the graph of [ is the set of points (z, f (2))
for z € E. In particular, if E is the set of real numbers and [ is real-valued, the
graph of f is a subset of the plane.

Suppose E is compact, and prove that [ is continuous on F if and only if
its graph is compact. ‘

Solution. Let Y be the co-domain of the function f. We invent a new metric
space B X Y as the set of pairs of points (z,y), z € E, y € Y, with the metric
p((@1,10), (22,92)) = dn(r1,72) + dy (41, 92). The function p(z) = (z, f(z)) is
then a mapping of F into E x Y.

We claim that the mapping ¢ is continuous if [ is continuous. Indeed, let

r € X and € > 0 be given. Choose n > 0 so that dy (f(z), f(u)) < g if

dg(z,y) < 7. Then let § = min (77, g) It is easy to see that p(p(z), o(u)) < e

if dg(r,u) < 6. Conversely if ¢ is continuous, it is obvious from the inequality
plp(z), o(uw)) > dy (f(z), f(u)) that f is continuous.

From these facts we deduce immediately that the graph of a continuous
function f on a compact set E is compact, being the image of E under the
continuous mapping ¢. Conversely, if f is not continuous at some point z, there
1s a sequence of points z,, converging to x such that f(z,) does not converge to
f(z). If no subsequence of f(z,) converges, then the sequence {(zn, f(z,)},
has no convergent subsequence, and so the graph is not compact. If some
subsequence of f(z,) converges, say f(zn,) — 2, but z # f(z), then the graph
of f fails to contain the limit point (z,2), and hence is not closed. A fortiori it
is not compact.

Exercise 4.7 If E C X and if f is a function defined on X, the restriction of f
to E is the function g whose domain of definition is E, such that g(p) = f(p) for
p € E. Define f and g on R? by £(0,0) = 9(0,0) = 0, f(z,y) = 2y%/(z? + yt),
9(z,y) = z?/ (2% + o5) if (z,y) # (0,0). Prove that f is bounded on R?, that
g is unbounded in every neighborhood of (0,0), and that f is not continuous at
(0,0); nevertheless, the restrictions of both f and g to every straight line in R2
are continuous!
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Solution. The fact that |f(x,y)| < % is an easy consequence of the inequality

e

2)2 . 3 y_ _ _}__
(z —y?)? > 0. The fact that 313)% 9(y ,y) = hr% 20 3_13) 5 oo shows that

g is unbounded on every neighborhood of infinity. The fact that lin%) f@?,y) =
y—>

4

231_{% Qy—yi = % shows that f is not continuous at (0,0).

Since f and g are continuous except at (0,0), it is obvious that their re-
strictions to any line that does not pass through (0,0) are continuous. Now
a line that does pass through (0,0) has an equation that is either z = 0 or
y = azx for some a. Both f and g are constantly 0 on the first of these and
on the second we have f(x azr) = a :1:3/(:1: + a*z?) = a®z/(1 + a*z?), while
g(z, az) = a2z%/(2? + a%2%) = a?z/(1 + a®xz*). Both of the latter are obviously
continuous functions.

Exercise 4.8 Let f be a real uniformly continuous function on the bounded
set E in R!. Prove that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

Let @ = inf E and b = sup F, and let § > 0 be such that |f(z) — f(y)] < 1if
z,y € E and |z — y| < 6. Now choose a positive integer IV larger than (b—a)/é,

’;"1 bk |, E=12...,N. For
each k such that [y NE # @ let xx € ENI;. Thenlet M =1+ max{[f(a:k)|}

If £ € E, we have |z — x| < § for some k, and hence |f(z)] < M.

and consider the N intervals I = [a -+

The function f(z) = z is uniformly continuous on the entire line, but not
bounded.

Exercise 4.9 Show that the requirement in the definition of uniform continuity
can be rephrased as follows, in terms of diameters of sets: To every € > 0 there
exists a § > 0 such that diam f(E) < ¢ for all E C X with diam E < 6.

Solution. Suppose f is uniformly continuous and € > 0 is given. Choose
any positive number o smaller than €. Then there exists 6 > 0 such that
dy (f(z), f(u)) < a if dx(z,u) < 6. Hence if E is any set of diameter less than
6 and z and u are any two points in E we have dy(f (z), f(uw)) < a, so that
~diam f(E) La<e.

Conversely if f satisfies the condition stated in the problem, it is obvious
that for any € > 0 there exists § > 0 such that dy(f(z), f(u)) < € whenever
dx (z,u) < 6. (Choose § > 0 corresponding to ¢ in the condition of the problem
and then let E be the two-point set {z,u}.)
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Exercise 4.10 .Complete the details of the following alternate proof of Theorem
4.19: If f is not uniformly continuous, then for some £ > 0 there are sequences

{Pn}, {gn} in X such that dx(ps,¢n) — 0 but dy (f(pn), f(gn)) > e. Use
Theorem 2.37 to obtain a contradiction.

Solution. Theorem 4.19 asserts that a continuous function on a compact set
is uniformly continuous. By Theorem 2.37 there are subsequences {p,,} and
{gn, } that converge to points p and q respectively. Since dx (pn,q,) — 0, it
follows that p = q. However, since f is continuous, it follows from Theorem
4.2 that f(pn,) and f(an,) converge to f(p), which, since dY(f(pnk)>f(an) <

dY(f(pnk)7 f(p)> -+ dY (f(p)7 f(an)): imphes that dY (f(pnk:)7 f(an)) - O’ con-
tradicting the inequality dy (f(pn,), f(gn,)) > e.

Exercise 4.11 Suppose f is a uniformly continuous mapping of a metric space
X into a metric space Y and prove that {f (zn)} is a Cauchy sequence in Y for
every Cauchy sequence {z,} in X. Use this result to give an alternative proof
of the theorem stated in Exercise 13.

Solution. Suppose {z,} is a Cauchy sequence in X. Let ¢ > 0 be given. Let
6 > 0 be such that dy (f(z), f(u)) < ¢ if dx(z,u) < 8. Then choose N so that
dx(Tn,Tm) < 6 if n,m > N. Obviously dy (f(zn), f(Zm)) < € if myn > N,
showing that {f(z,)} is a Cauchy sequence.

Now let f be a uniformly continuous function defined on a dense subset F
of X, mapping F into a complete metric space Y (for example, Y could be the
real numbers). To prove that f has a unique continuous extension to all of X,
proceed as follows. For each z ¢ X \ E let {z,} be a sequence of points in E
converging to z. Define f(z) to be the limit of the Cauchy sequence {f(z,)}.
This definition is unambiguous; for if {un} also converges to z, then the sequence
{yn} defined by '

SR if n is even,
Yn = {u(n+1)/2 if n is odd,

also converges to z. Hence {f (yn)} is a Cauchy sequence in Y, and so all
subsequences of {f(y,)} converge to the same limit. In particular {f(z,)} and
{f(un)} both converge to the same value.

The extended function is also uniformly continuous. For if £ > 0,let 6 >0

be such that dy (f(z), f(u)) < § if z,u € E and dx(z,u) < 6. Then if z € E,
u € X\ E, and dx(z,u) < 6, choose v € E with dx(v,u) < § — dx(z,u) and
dy (f(v), f(u)) < g (this is possible because of the definition of f(u)). We then
have dx (z,v) < dx(z,u) + dx(u,v) < 8, and so

B (F(2), J(0) < dy (£(2), F0)) + v (7(0), £ () < 5 <.

Similarly if z € X \E,u e X\E, and dx(z,u) < §, choose v,w € E with
1 1 : €
306 = dx(@.w), dx(z,0) < 36— dx(z,w), dy(£(0), F(u)) < &,

dx(’l),’u,) < 3
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and dy(f(w),f(:c)) < % We then have

dx (v,w) < dx(v,u) + dx(u,z) + dx(z,w) <6
and hence

dy (f(x), f(u) < dy(f(3), f(w)) + dy (f(w), f(v)) +‘dy(f(v),f(U)) <e.

The uniqueness of this extension follows from Exercise 4 above.

Exercise 4.12 A uniformly continuous function of a uniformly continuous func-
tion is uniformly continuous.
State this more precisely and prove it.

Solution. Let f: X — Y and g : Y — Z be uniformly continuous. Then
go f: X — Z is uniformly continuous, where g o f(z) = g(f(z)) for all z € X.

To prove this fact, let € > 0 be given. Then, since g is uniformly contin-
uous, there exists n > 0 such that dz(g(u),g(v)) < ¢ if dy(u,v) < 7n. Since
f is uniformly continuous, there exists § > 0 such that dy (f(z), f(y)) < n if
dx (:c,y) < 6.

It is then obvious that dz(g(f(z)),9(f(v))) < € if dx(z,y) < 6, so that go f
is uniformly continuous. '

Exercise 4.13 Let E be a dense subset of a metric space X, and let f be a
uniformly continuous real function defined on E. Prove that f has a continuous
extension from E to X (see Exercise 5 for terminology). (Uniqueness follows
from Exercise 4.) Hint: For each p € X and each positive ineger n, let V,(p)
be the set of all ¢ € E with d(p,q) < 1/n. Use Exercise 9 to show that the
intersection of the closures of the sets f(V1(p)), f(Va(p)), ..., consists of a single
point, say g(p), of R'. Prove that the function g so-defined is the desired
extension of f.

Could the range space R! be replaced by R"™. By any compact metric space?
By any complete metric space? By any metric space?

Solution. We shall carry out the proof inn the context of any complete metric
space, showing that the range space could be R™ or any compact metric space.

The diameter of the closure of f(V;(p)) is the same as the diameter of f(V;(p))
itself. Hence by Exercise 9 above these diameters tend to zero. Since they form
- a nested sequence of nonempty closed sets, their intersection must consist of a
single point, which can be defined to be g(p). If p € E, the intersection of these
sets is just f(p) (since f(p) is in all the sets, and only one point belongs to all of
them), so that g coincides with f on E. It remains to show that g is continuous.
This proof is identical to the proof given in Exercise 11 above, which depends
only on the fact that for u € X \ F and € > 0, 6 > 0 there is a point v € E
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with dx (v,u) < § and dy(f(v), f(u)) < e. This condition clearly holds in the
present context as well. - ’

In general this theorem fails on an incomplete metric space. For example,
take X to be the real numbers, Y and E the rational numbers, and let f: E — YV
be given by f(z) = z. There is no possible extension of f to a mapping from
X into Y. (There is a unique extension of f to a mapping from X into X , but
its range is not contained in Y. If there were an extension of f to a mapping
from X into Y, there would be two extensions of f to mappings from X into
X, contradicting the uniqueness of the extension.)

Exercise 4.14 Let | = [0,1] be the closed unit interval. Suppose f is a con-
tinuous mapping of I into I. Prove that f(z) =z for at least one z € J.

Solution. If f(0) = 0 or f(1) = 1, we are done. If not, then 0 < f(0) and
f(1) < 1. Hence the continuous function 9(z) = = — f(z) satisfies 9(0) < 0 <
g(1). By the intermediate value theorem, there must be a point z € (0,1) where
9(z) = |

Exercise 4.15 Call a mapping from X into Y open if f (V') is an open set in
Y whenever V is an open set in X.
Prove that every continuous open mapping of R! into R! is monotonic.

Solution. Suppose f is continuous and not monotonic, say there exist points
a < b < cwith f(a) < f(b), and fle) < f(b). Then the maximum value
of f on the closed interval la,c] is assumed at a point u in the open interval
(a,c). If there is also a point v in the open interval (a,c) where f assumes its
minimum value on [a,c], then f(a,¢) = [f(v), f(w)]. If no such point v exists,
then f(a,c) = (d, f(u)], where d = min(f(a), f(c)). In either case, the image of
(a,c) is not open.

Exercise 4.16 Let [z] denote the largest integer contained in z, that is [z] is
the integer such that z — 1 < [z] <z; and let (z) = z — [z] denote the fractional
part of z. What discontinuities do the functions [z] and (z) have?

Solution. The two functions have the same discontinuities, since each can be
written as the difference of the continuous function f(z) = z and the other
function. Now the function [z] is constant on each open interval (k,k + 1);
hence its only possible discontinuities are the integers. These are of course real
discontinuities, since if ¢ = 1, there is no § > 0 such that |[z] - [k]] < € whenever
|z — k| < é. (For if any 6 is given, let n = min(1,6). Then [k} — [k — 2] =1.)
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Exercise 4.17 Let f be a real function defined on (a,b). Prove that the set of
points at which f has a simple discontinuity is at most countable. Hint: Let E
be the set on which f(z—) < f(z+). With each point z of E associate a triple
(p,q,T) of rational numbers such that

(@) flz=) <p< flz+),

(b) a < ¢ <t <z implies f(t) < p,

(¢) z <t <r<bimplies f(t) > p.

The set of such triples is countable. Show that each triple is associated with
at most one point of E. Deal similarly with the other possible types of simple
discontinuities.

Solution. The existence of three such rational numbers (p, ¢,7) for each simple
discontinuity of this type follows from the assumption f(z—) < f(z+), and the
definition of f(z—) and f(z+). We need to show that a given triple (p,q,r)
cannot be associated with any other discontinuity of this type. To that end,
suppose ¥y > z and f(y—) < f(y+). If we do not have f(y—) < p < f(y+),
then the triple chosen for y will differ from (p,q,r) in its first element. Hence
suppose f(y—) < p < f(y+). In this case we definitely cannot have r > y, since
there are points t € (z,y) such that f(t) < p (if there weren't, we would have
fly=) = p). |

We have thus shown that the set of points « € (a, b) at which f(z—) < f(z+)
is at most countable. The proof that the set of points at which f(z—) > f(z+)
is at most countable is, of course, nearly identical.

Now consider the set of points z at which th_r'ralc f(t) exists, but is not equal

to f(z). For each point z € (a,b) such that tlgr; f(t) < f(z), we take a triple

(p,q,7) of rational numbers such that

(@) Jim £(t) < p < f(a),

(b)a<g<t<zorz<t<r<bimplies f(t) < p. ‘ _
As before, if y > z and %1_% f(t) < f(y), the triple associated with y will

be different from that associated with z. For even if }1_1’111; ft) <p < f(y), we

cannot have r > y, since f(y) > p and z < y.

The proof that the set of points z € (a,b) at which 7}im f(t) > f(x) is
countable is nearly identical.

Hence, the number of points in [e,b] at which f has a discontinuity of first
kind is countable.

Exercise 4.18 Every rational z can be written in the form z = m/n, where
n >0 and m and n are integers without any common divisors. When z = 0, we
take n = 1. Consider the function f defined on R! by

0 (z irrational),
@={i (o2
n o on
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Prove that f is continuous at every irrational point, and that f has a simple
discontinuity at every rational point. '

Solution. We shall show that tlim f(t) = 0 for every t. Both assertions follow

—T .

immediately from this fact. To this end, let & > 0 be given, and let = be any
real number. Let N be the unique positive integer such that N < 1/e < N+1,
and for each positive integer n = 1,2,..., N , let kn, be the unique integer such
that

k—”§x<kn+l
n n

: kn . .
Then for each such n let §, = 1 if £ = —, otherwise let 6, = min (x —~
n n
k kp+1
n’ n m
0 < |z —1t| < é. This is obvious if t is irrational, while if ¢ is rational and  — —,

- m) Finally let 6 = min(éy,...,8y). We claim that If()] < e if

we necessarily have n > N by the choice of the numbers 0n, for n < N. Hence
if ¢ is rational, then f(t) <

< €. The proof is now complete.
N+1 P P

Exercise 4.19 Suppose f is a real function with domain Rl which has the
intermediate-value property: If f(a) < ¢ < f(b), then f(z) = ¢ for some z
between a and b.

Suppose also, for every rational r, that the set of all z with flz) =7ris
closed.

Prove that f is continuous.

Hint: If 2, — 20 but f(z,) > r > f(z) for some r and all n, then f(t,) =1
for some t, between zy and z, ; thus ¢, — zg. Find a contradiction. (N. M.
Fine, Amer. Math. Monthly, vol. 73, 1966, p. 782.)

Solution. The contradiction is evidently that zo is a limit point of the set of
t such that f(t) = r, yet, zo does not belong to this set. This contradicts the
hypothesis that the set is closed.

Exercise 4.20 If E is a nonempty subset of a metric space X, define the dis-
tance from z € X to E by

pe(z) = inf d(z, 2).

(a) Prove that pg(z) = 0 if and only if z € E.
(b) Prove that pg is a uniformly continuous function on X by showing that

lpe(z) = pE(y)] < d(z,y)
forallz € X and y € X.
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Hint: pp(z) < d(z,z) < d(z,y) + d(y, 2), so that

pe(z) < d(z,y) + pe(y).

Solution. (a) For each positive integer n, let z, € E be such that pg(z) <
1

d(z,2,) < pe(z)+ ~ It follows that d(z, z,) — pe(z). If pg(z) = 0, this means

zn — z, i.e., z € E. Conversely, if z € E, there exists a sequence {2,}32, C E

such that z, — z, and this means d(z,,z) — 0, so that pg(z) = 0.

(b) The last inequality given in the hint follows form the first by taking the
infimum over z on the right-hand side. This inequality immediately implies that

pe(z) — pe(y) < d(z,y).

By interchanging z and y, we also obtain
pe(y) — pe(z) < d(y, 7) = d(z, ).

Since |pp(z) — pE(y)l must be either pg(z) — pe(y) or pe(y) — pe(z), it follows
that ‘

lpe(z) — pE(Y)| < d(Z,Y)-

Exercise 4.21 Suppose K and F are disjoint sets in a metric space X, K is
compact, F' is closed. Prove that there exists 6 > 0 such that d(p,q) > 6 if
p € K, g€ F. Hint: pp is a continuous positive function on K.

Show that the conclusion may fail for two disjoint closed sets if neither is
compact.

Solution. Following the hint, we observe that pr(z) must attain its minimum
value on K, i.e., there is some point 7 € K such that

pr(r) = minpr(q).
Since F is closed and r ¢ F, it follows from Exercise 4.20 that pp(r) > 0. Let
§ be any positive number smaller than pp(r). Then for any p € F, g € K, we
have

d(p,q) 2 pr(q) = pr(r) > 6.

This proves the positive assertion.
As for closed sets in general, one could let F' = {1,2,3,...} and K = {1+
%,2—{-%,»3—}—%...} in R, or one could let F = {(z,y) : y =0} and K = {(z,y) :

} in R2. In both cases there are sequences of points p, € F, g, € K

=
such that d(pn,qn) — 0.
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Exercise 4.22 Let A and B be disjoint nonempty closed sets in a metric space
X, and define :
oy = Pa(p)
"~ palp) + pe(p)
Show that f is a continuous function on X whose range lies in [0,1], that
f(p) = O precisely on A and f(p) = 1 precisely on B. This establishes a
converse of Exercise 3: Every closed set A C X is Z (f) for some continuous real

J on X. Setting
v=r=(.3) w=r((31)

(pe X).

show that V' and W are open and disjoint, and that A C V, B ¢ W. (Thus
pairs of disjoint closed sets in a metric space can be covered by pairs of disjoint
open sets. This property of metric spaces is called normality.)

Solution. The continuity of f follows from the fact that the quotient of two
continuous real-valued continuous functions is continuous wherever the denom-
Inator is non-zero. Now the denominator of the fraction that defines f cannot
be zero, since the first term is zero only on A and the second is zero only on B,
while A and B are disjoint. The fact that f(p) =0 if and only if p € A follows
from Exercise 20 and the fact that A4 is closed. Likewise the fact that f(p) =1
if and only if p € B follows from Exercise 20 and the fact that B is closed. The
assertion about V' and W is immediate, since V and W are the inverse images
of disjoint open sets containing 0 and 1 respectively.

Exercise 4.23 A real-valued function f defined in (a,d) is said to be convez if
FOz+ (1= Ny) S Af(2) + (1 -\ f(y)

whenever a <z < b,a <y < b, 0 < A < 1. Prove that every convex function is
continuous. Prove that every increasing convex function of a convex function is
convex. (For example, if f is convex, so is ef )

If f is convex in (a,b) and ifa < s <t < u < b, show that

FO-16)  f) =16 _ flw) - 51)

t—s U— 8 u—t

Solution. Fix any points ¢, dwitha < c<d< b let n > 0 be any fixed

. . —C c 1 . s .
positive number with < and consider any two points: z,y satisfying

¢+n <z <y < d-mn The inequality in the definition implies that f(t)
is bounded above on [c,d]. Indeed, if ¢ < ¢ < d, taking A = ——=

t=(1—Ac+ A, and so, if M = max(f(c), f(d)), we have

, we have

FO) S (1= NfQ) +Af(d) < (1= \M +AM = M.
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d
It is less obvious that f is also bounded below on [¢, d]. In fact if S—_Qt— <t<d,

we have

e+

where \ = d_—c_, so that
2(t—c¢)

1(5°) < Csgt)ro (=)

which implies-

0> (B22) (55 - 2D > Ll (44| gy

d
The proof that f is bounded below on [c, ¢+

M such that |f(t)] < M for all ¢ € [, d].
We can also write

] is similar. Hence there exists

z=(1-Ac+ Ay,
y—c _
fl&) = fly) < (1 =X)(f(0) - f() =

_Yy—-z c) — u c) —
= L2250 - 1) < L2215 - )

where \ = € (0,1). Accordingly we have

Thus o
flz) = fly) < T(y — ).

Similarly, writing y = Az + (1 — \)d, where A = Z———% € (0,1), we find

7(y) = (=) < (1= N (F(d) - f(a)) =
= T U@ = 1) < 2 1) - (o))

Hence we also have _
2M

Fy) - fz) < —n—(y - z).

" Therefore o |
\F(y) ~ f(z)] < ——ly - z|

for all z,y € [c+n,d — 7). Since ¢, d, and 7 are arbitrary, it follows that f is
~continuous on (a, b).
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If f(z) is convex on (a,b), and g(z) is an increasing convex function on
f((a,b)), we have '

9(f(Az + (1= Ny)) < g(Af(2) + (1= 1) f (%)) < Ag(f(z)) + (1 - Ag(F(y))-
The inequality - 7 '
)= () _ Fw) = £(s)

t—s - u—s

can be rewritten as
- t—s8

f) <

t—s

)£(s),

which is precisely the definition of convexity if we note that

flu) + (1 -

U— 8 U—8
t=Au+(1-XN)s
t—s

when )\ =

The other inequality is proved in exactly the same way.

Exercise 4.24 Assume that f is a continuous real function defined in (a,b)
such that » @) + 1)
r+y x Y
<
1(57) <=5
for all z,y € (a,b). Prove that f is convex.

Solution. We shall prove that
FOz+(1=Ny) <Af(z) + (1 - N f(ly)

k
for all “dyadic rational” numbers, i.e., all numbers of the form )\ = o ‘where k

is a nonnegative integer not larger than 2". We do this by induction on n. The
case n = 0 is trivial (since A =0or A = 1). In the case n = 1 we have A =0 or
A=1lor= % The first two cases are again trivial, and the third is precisely

the hypothesis of the theorem. Suppose the result is proved for n < r, and
l

k
consider A = ——. If k is even, say k = 2l, then —— = o and we can appeal

or+1 : or+1
to the induction hypothesis. Now suppose k is odd. Then 1 < k < 27+1 — 1,
v — kE+1
and so the numbers [ = and m = a are integers with 0 <l < m < 27,
We can now write

\— s+t
‘ o9 0
k-1 E+1 m
where s = 5T = 5 and t = T = o We then have
1- tr+(1—t
Ao+ (1= ay = 2 A=+l (- 1y

2
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Hence by the hypothesis of the theorem and the induction hypothesis we have

Foc+ -y < Lerrl-sytftns -ty

$f(@) + (1= 9)f () + (@) + (1 - ) (3)
v -
= () i@+ (1- ) 5w)

= A(z)+ {1 -Nfy).

This completes the induction.
Now for each fixed z and y both sides of the inequality

FOz 4+ (1= 2A)y) <Af(z) + (1 - ) f(y)

<

are continuous functions of A. Hence the set on which this inequality holds (the
- inverse image of the closed set [0,00) under the mapping A — Af(z) + (1 —

Mf(y) = f(Az + (1= N)y)) is a closed set. Since it contains all the points %%,

0<k<n n=1,2,... it must contain the closure of this set of points, i.e., it
must contain all of [0, 1]. Thus f is convex.

Exercise 4.25 If A C R* and B C RF, define A + B to be the set of all sums
x+ywithxe A yeB.

(a) If K is compact and C is closed in R*, prove that K + C is closed.

" Hint: Takez ¢ K+C, put F =z —C, the set of all z—y with y € C. Then
K and F are disjoint. Choose § as in Exercise 21. Show that the open ball with
center z and radius § does not intersect K + C.

(b) Let o be an irrational number. Let C; be the set of all integers. Let Cs be
the set of all na with n € C;. Show that C; and C; are closed subsets of R!
whose sum C + Cs is not closed, by showing that C; + Cs is a countable dense
subset of R!.

Solution. (a) It is clear that the set F defined in the hint is a closed set. It is
disjoint from K, since z ¢ K + C. Let ¢ be such that [p —q| > é§ if p € F and
q € K. We claim that there is no point of K +C inside the ball of radius § about
z. For suppose w were such a point. By definition we would have w = u + v,
where u € K and v € C. But then we would have

ju—(z-v)l=|w-2z| <§

which is a cbntradiction, sinceu € K and z—v € F. Thus K + C is closed.

(b) Neither of the sets C; and C5 has any limit points; hence both are closed
sets. For each fixed integer N > 2, consider the fractional parts 8; = a — [a],
B2 = 20— [20],..., By = Na — [Na]. There must be some half-open interval
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[k—l k

N-1"N-1 _
since there are N numbers and only N — 1 intervals. (Note: No two of these
numbers are equal, since 8; = Bj, % # 7, would imply

), k=1,2,..., N—-1 containing two of the numbers gy, .. . , BN,

., _ lio] = [jel
i—j

L.e., a would be a rational number.) Now the inequalities

0 < (e~ fia]) = (jor = [ja]) < 57—

say that' (i — j)a + ([ja] — [ie]) € (O, —N—1_+1->, that is, there is certainly a point

of C1 + Cy in (0, Nl_ 1> for any N > 2. We shall now prove that there is a

kE k+1 e
point of C; + €5 in ( -, + ) for any integer k and any positive integer n. To
n

n
do so, fix the integer g such that gn < k < (g + 1)n, and choose y € C; + C,

1 .
such that 0 <y < =. Then z = ny € C1 4+ Cz and 0 < z < 1. Hence there is a
n
positive integer p such that k < pz +gn < k+ 1. This says precisely that

k< +<k+1
n ~PYT4 )

-and certainly py+q € Cy + C,. Now let O be any nonempty open subset of R!.

Then O contains an interval (a, b). If n >
(k k+1

n M
and hence O contains such a point. Therefore C; + C5 is dense in B! Since it
is a countable set, it is not all of R!, and hence not closed.

2 , there is an integer k such that
—a

> C (a,bd). This interval, as just shown, contains a point of C; + Cs,

Exercise 4.26 Suppose X, Y, Z are metric spaces and Y is compact. Let f
map X into Y, let g be a continuous one-to-one mapping of Y into Z, and put
h(z) = g(f(z)) for z € X.

Prove that f is uniformly continuous if A is uniformly continuous.

Hint: g~ has compact domain 9(Y), and f(z) = g=*(n(z)).

Prove also that f is continuous if 4 is continuous.

Show (by modifying Example 4.21, or by finding a different example) that
the compactness of Y cannot be omitted from the hypotheses, even when X
and Z are compact.

Solution. Theorem 4.17 asserts that g~ is continuous, and since its domain is
compact, it is uniformly continuous. Exercise 12 above then implies that f is
uniformly continuous. The same argument, with the word “uniformly” omitted,
shows that f is continuous if 4 is continuous.
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To get a counterexample when Y is not compact, let X =[0,1] = Z, Y =
{0}Ul,00), and let f: X - Y and g: Y — Z be given by

1

0, z=0,
1
) 1<y <o,
g(y)—{g, y=0.

Then h(z) = g(f(z)) = , so that A is uniformly continuous, and g is continuous
and one-to-one, yet f is not even continuous.
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