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Chapter 5
Differentiation

- Exercise 5.1 Let f be defined for all real z, and suppose that
f(2) = F()] < (2 —y)?

for all real z and y. Prove that f is constant.

Solution. Dividing by = — y, and letting  — y, we find that f’ (y) =0forall y.
Hence f is constant.

Exercise 5.2 Suppose f'(z) > 0 in (a,b). Prove that f is strictly increasing in
(a,b), and let g be its inverse function. Prove that g is differentiable, and that

! - a<z

Solution. For any c, d with a < ¢ < d < b there exists a point p € (¢, d) such
that f(d) — f(c) = f'(p)(d — ¢) > 0. Hence f(c) < f(d).

We know from Theorem 4.17 that the inverse function g is continuous. (Its
restriction to each closed subinterval [¢,d] is continuous, and that is sufficient.)
Now observe that if f(z) =y and f(z + h) = y + k, we have

gy+k —gly) 1 1 1
k o)~ feshl=fG@ - fi(a)’

Since we know lim ﬁ = ﬁn_io—(ﬁ provided lim ¢(t) # 0, it follows that for any
€ > 0 there exists > 0 such that
1 1
flz+h)=f(z) f'(z) <¢
3

if 0 < |h| < 7. Since h = g(y+k)—g(y), there exists § > 0 such that 0 < |h| <n
if 0 < |k| < 6. The proof is now complete.
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Exercise 5.3 Suppose g is a real function on B! with bounded derivative (say
l9'l < M). Fix ¢ > 0, and define flz)=z+ £g(z). Prove that f is one-to-one
if £ is small enough. (A set of admissible values of & can be determined which
depends only on M.)

1
Solution. If 0 < ¢ < w7 Ve certainly have

fl(z)>1—eM >0,

and this implies that f(z) is one-to-one, by the preceding problem.

Exercise 5.4 If

— o .. fend 0
Cot 5o+ =2 — — =0,
where Cy,..., C, are real constants, prove that the equation

Co+Ciz+- 4+ Cpr1z™ P+ Cpz™ =0

has at least one real root between 0 and 1.

Solution. Consider the polynomial

¢ Cr—
P(I)’:C'ox-!-?lx?‘.;_.a..i_ - 1$n+nc_':1xn+1

b

whose derivative is
p,(.’L‘) =Co+Ciz+---+C _1z™ Chx™.

It is obvious that p(0) = 0, and the hypothesis of the problem is that p(1) =0.
Hence Rolle’s theorem implies that p’ (z) = 0 for some z between 0 and 1.

Exercise 5.5 Suppose f is defined and differentiable for every z > 0, and
fl(z) = 0as z — +o00. Put g(z) = f(x +1) -~ f(z). Prove that g(z) > 0 as
T — 00,

Solution. Let € > 0. Choose z; such that |f(z)] < eif 2 > zg. Then for any
T 2 Zo there exists z; € (z,z + 1) such that

flz+1) = f(z) = f'(z1).

Since |f/(z1)] < ¢, it follows that |f(z+1) - f(z)] < ¢, as required.
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Exercise 5.6 Suppose
(a) f is continuous for z > 0,
(b) f'(z) exists for z > 0,

(©) 70) =0, |
(d) f’ is monotonically increasing.
Put

o)=L (o>

and prove that g is monotonically increasing.

Solution. By the mean-value theorem

fz) = f(z) - f(0) = f'(c)z,

for some ¢ € (0,z). Since f’ is monotonically increasing, this result implies that
f(z) < zf’(z). It therefore follows that

zf'(z) — f(z)

>0,

g'(z)=

so that g is also monotonically increasing.

Exercise 5.7 Suppose f’(z) and ¢'(z) exist, g'(z) #0, and f(z) = g(z) = 0.
Prove that 0 ) '
t "(z
=2 9(t) ~ g(@)

(This holds also for complex functions.)

Solution. Since f(z) = g(z) = 0, we have

o £(t) - ()
0 _
R Sy py
t—2x
L F) - £(z)
_ t—z t—=x
B im g(t) — g(z)
t—z t1—2x
f'(z)
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Exercise 5.8 Suppose f is continuous on [a, b] and € > 0. Prove that there
exists 6 > 0 such that ‘ ‘

S t—z I (I){ <€
whenever 0 < [t —z| < §,a <z <b, a <t <b. (This could be expressed by

saying that f is uniformly differentiable on [a,b] if f’ is continuous on [a,b].)
Does this hold for vector-valued functions too?

Solution. Let § be such that |f/'(z)—f'(u)| < e for allz,u € [a, ] with |z—u| < 4.
Then if 0 < |t — z| < § there exists u between t and z such that

£t) = f(z)

t—2x

= f'(u),
and hence, since |u — z| < 6,

f@) - fz)

t—=zx

= f(@)| =1 (w) - f'{z)| <.

Since this result holds for each component of a vector-valued function f(z), it
must hold also for f.

Exercise 5.9 Let f be a continuous real function on R!, of which it is known
that f/(z) exists for all  # 0 and that f'(z) — 3 as z — 0. Does it follow that
f'(0) exists?

Solution. Yes. By L'Hospital’s rule

lim L8 =70 _ f'(t) = 3,

t—0 t t—0

and this by definition means that f’(0) = 3.

Exercise 5.10 Suppose f and g are complex differentiable functions on (0, 1),
flz) = 0, g(z) — 0, f'(z) — A, ¢(z) — B as ¢ — 0, where A and B are
complex numbers, B # 0. Prove that

. flz) A

},'li»% glz) B’

Compare with Example 5.18. Hint:

f@) ff@) g 3 L,z
&~ At

Apply Theorem 5.13 to the real and imaginary parts of f(z)/z and g(z)/z.
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Solution. We can make f and g continuous on [0,1) by simply defining f(0) =

0 = g(0). Then Exercise 9 applied to the real and imaginary parts of f and
g show that f'(0) = A and ¢’(0) = B. (These are one-sided derivatives, since
f and g are not defined for negative values of z; however, we could extend
them as odd functions, since both are 0 at 0). We could then apply Exercise 7,
whose proof does not use anything but the definition of the derivative and some
general facts about limits. In this way we get the result without resorting to
the combinatorial trick referred to in the hint. This result shows that many of
the facts ordinarily proved for real functions by use of the mean-value theorem
and L’Hospital’s rule remain true for complex-valued functions, even though, as
Example 5.18 shows, these theorems are not true for complex-valued functions.

Exercise 5.11 Suppose f is defined in a neighborhood of z, and suppose f”(z)
exists. Show that

o T@HR) + £ =) = 21(a)

h—0 h?

= f"(=).

Solution. For a real-valued function this is a routine application of L’Hospital’s
rule:

o L@+ R+ @ = ) = 21 () fla+h) = 'z =h)

h—0 hZ - }zlino 2h
_ 1. fz+h) - f(z)
= gam h *
L f@) == h
h
= f'(z).

For complex-valued functions the result follows from separate consideration of
real and imaginary parts.

The limit will be zero at 2 = 0 for any odd function f whatsoever, even
if the function is not continuous. For example we could take f(z) = sgn(z),
which is +1 forz > 0,0 forz =10, and -1 forz < 0

Exercise 5.12 If f(z) = |z|®, compute f/(z), f”(z) for all real z, and show
that £ (0) does not exist.

Solution. For z > 0 we have f'(z) = 322, f”(z) = 6z, and for z < 0 f'(z ) =
—622, f'(z) = —6z, ie., fl(z) = 3x!m[ and f"’(z) = 6|z| for z # 0. By
Exerc1se 9, it therefore follows that f/(0) exists and equals 0, and then another
application of Exercise 9 shows that f”(0) also exists and equals 0. However

f(z) ~ 17(0)

x

= bsgn (z),

which has no limit at 0. Hence f()(0) does not exist.
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“Exercise 5._13 Suppose a and ¢ are real numbers, ¢ > 0, and f is defined on
[-la 1] by . ‘

a

-
8 8

1N

N N’

sin(z~°) x # 0),
0).

1
if

TN AN

f(a) = {g’
Prove the following statements:
(@) f is continuous if and only if a > 0.
(b) f'(0) exists if and only if a > 1. ,
(c) f’ is bounded if and only if ¢ > 1 +c.
(d) f' is continuous if and onlylifa > 1+¢.
(e) /”(0) exists if and only if ¢ > 2 + .
(f) £ is bounded if and only if a > 24 2c
(9) f” is continuous if and onlyifa > 2+ 2c.
Solution. We remark editorially that there are two difficulties with this problem.
One is that we haven’t yet introduced the function sin. To overcome that
problem we can rely on our intuitive notion or use the Taylor series if we have
to. The second problem is more serious, however: What do z% and z=¢ mean

when z < 07 In general these will be complex-valued functions. It might be

better to use absolute values in both cases. Thus we shall amend the problem
by defining f(z) = |z|® sin{|z|7¢) when z # 0.
(a) Since f is infinitely differentiable except at z = 0, the only question of

e - 1 e .
continuity is at x = 0. Let ¢, = 27r(n -+ %), Zn =1n° and y, = —=t, °. Notice

V2

that f(z.) = y, and that y, tends to % ifa=0and to +o00 if a < 0. Hence

the function cannot be continuous if a < 0. On the other hand, we have
[f(z) = FO)] = |f ()] < |2},

so that if a > 0'and ¢ is given, we can choose § = €%, and then |t —0| < §
implies |f(z) —~ f(0)] < ¢, i.e., f(z) is continuous at z = Q.
(0) If f'(0) exists, then f is continuous at 0, so that a > 0. Notice that

f(xn) ~ f(0) _Yn 1 1:".

T, Tn 2

' 1
which tends to 7 ifa=1and to+o0if0 < a < 1. Hence f'(0) does not exist
if @ < 1. On the other hand if ¢ > 1 we have

PGS

,xla—l N 0,

and so f'(0) = 0.
(¢) For z # 0 we have

'(z) = sgn (=)[al* [asinlz|~*) — cle|~ cos(|z|~)].
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Hence f/(z,) = —\}‘5[&55?;1 — ¢z, °T*71], which tends to —co if a < 1 +c. On
the other hand we have » \
(@) < lallz]*™ + clz|*~~e,

which is certainly bounded on [-1,1] if a > 1 +e.

(d) If ' is continuous, it is bounded, and so a > 1 + ¢. However if g = 1+e¢
then

Flza) = —=[(1+ iz —

V2

L c . : :
which tends to —— as n — oo, while z,, — 0. Hence f’ is not continuous at 0

=
V2
unless @ > 1+ c. If a > 1 + ¢, the inequality

[ (@)l < lall2]*~ + cla]*1e,

implies that f(z) — 0 as z — 0, and so f’ is continuous.
(e) If f”(0) exists, then f’ must be continuous at 0, and so a > 1+ c. Now for

r#0
! Y
f—w = sgn (z) [a|z|* 2 sin(|z]~°) - clz]®2 cos(|z|~°).
Taking z= Zn, we find that this difference quotient equals
2—qa ct+2—a

ot e,

V2
which tends to % ifa=c+2and to ~o0 ifa < ¢+ 2. Hence f"(0) exists only
ifa>c+2. ‘
On the other hand, if @ > ¢+ 2, we have the inequality

f'(z) - 1'(0)

S a'xla—-Q +C].’L‘,a_c_2,

from which it follows immediately that f”(0) = 0.
(f) For z # 0 we have

f(z) = sgn ()[a(a - 1)[21°7% ~ la|*~2e~ sin(j2| =]
= ¢(2a — ¢ = 1)|z]*"° cos(|z| €.

In particular

2—a 2+2¢c—a ct+l—a

[ z,) = —\;_E[a(a—l)tnc —tn © —c(2a—c—1)t, ¢ s

which tends to —oo if @ < 2+ 2¢. On the other hand, we have the inequality

17"(@)1 < lalla ~ 1l2{*2 + 2lzf*=2~2 1 djga — ¢ — 1]jaf>~e-1,
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and the right-hand side is certainly bounded if o > 24 2c.

(9) If f” is continuous, then it is bounded, and hence a > 2+ 2¢. If ¢ = 2 + 2c,
we have '

1 —c—1

F(zn) = ’E[@c +2)(2e+ 1152 = ¢ — (3 + 3e)tn ],

2
' c ’ . .
which tends to 7 so that f” is not continuous at 0. On the other hand, if

a > 2+ 2c, the inequality
7@ < lalla = 1]]21°7% + ?|z[=2=2 4 ¢]2a — ¢ — 1||g[o~e1,

shows that f”(z) — 0 as 2 — 0, and hence f” is continuous.

Exercise 5.14 Let f be a differentiable real function defined in (a,b). Prove
that f is convex if and only if f’ is monotonically increasing. Assume next
that f(z) exists for every z € (a,b), and prove that f is convex if and only if
f"(z) 2 0 for all z € (a,b).

Suppose first that f* is montonically increasing, and that z < y. We wish to
show that if 0 < A < 1, then

FOz+ (1= Ny) < M) + (1 - V().

— z —
Y z’ 1 )= x
y—z y—z
Now the required inequality can be written

A =N = £(2)] 2 Af(2) - f(z)],

which, when we insert the values of A and 1 — A, and multiply by the positive
Yy—zx

Letting 2 = Az + (1 — \)y, we have \ =

yand x < z < y.

number -2y =2)’ becomes
[0 =1 | £)~ (z)
Yy—2z - z2—-z

Since the left-hand side is f’ (d) for some d € (z,y), the right-hand side is f'(c)
for some ¢ € (z, 2), and f’ is nondecreasing, we have the required inequality.

By Exercise 23 of Chapter 4 we know that if [ is convex on (a, b) and
a<c<d<p<gqg<hb,then

fld) - f(9) _ f(p) - f(d) < - 1)

d—c. T p-d T g-p
Hence, if f’ exists, letting d — ¢ and q — p, we find
F'(e) < f(p),

so that f/ is nondecreasing.
Finally if f” exists, we know that f' is nondecreasing if and only if f”(z) >0
for all z € (a,b). Hence f is convex if and only if f”(z) >0 for all z € (a,b).



75

Exercise 5.15 Suppose g ¢ R fisa twice-differentiable real function on
(a,00), and Mo, My, M> are the least upper bounds of |f(z)], |f'(z)], lf"(z)],
respectively, on (a, 00). Prove that _ '

M} < 4MyM,.

Hint: If h > 0, Taylor’s theorem shows that

F/@) = 571f(e+ 20) - ()] - hf" (e

for some ¢ € (z,z + 2h).. Hence

@) < haty + 20

To show that M? = 4MyM, can actually happen, take g = —1, define

2r2 -1, (-1<z<0),
flz) = 72 -1
241’

and show that Mo = 1, M; = 4, My = 4.
Does Mf < 4M7 M5 hold for vector-valued functions too?

(0 <z < 0),

Solution. The inequality is obvious if Mo = +o00 or M, = +00, so we shall
assume that My and M, are both finite, We need to show that

[f'(x)] < 2¢/ Mo M,

for all 2 > a. We note that this is obvious i M; = 0, since in that case f’ (z)
is constant, f(z) is a linear function, and the only bounded linear function is
a constant, whose derivative is zero. Hence we shal] assume from now on that
0<M2<+ooandO<Mo<+oo.

Following the hint, we need only choose h = 1/ %g,and we obtain

2
[ (2)] < 2/ MoMs,,

which is precisely the desired inequality.
The case of equality follows, since the example proposed satisfies

- 2
Jw)=1- z2+1
for z > 0. We see easily that |f(z)| <1 forall z > —1. Now f(z) = Zz—;f—l?

for z > 0 and f/(z) = 4z for £ < 0. Tt thus follows from Exercise 9 above
that f'(0) = 0, and that f (z) is continuous. Likewise f'(z) =4 forz <0
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and f"(z) = Aot = —4—12-—:1— This shows that |f”(z)| < 4 forz > 0
(224 1)3 (22 4+1)% : ‘
~ and also that ﬁI% f’(z) = 4. Hence Exercise 9 again implies that f(z) is

continuous and f”(0) = 4.

On n-dimensional space let f(z) = (fl(x),...,fn(x)), Mo = sup|[f(z)],
M, = sup [f'(z)|, and M, = sup [f”(z)|. Just as in the numerical case, there
is nothing to prove if Ms = 0 or My = 400 or My = +00, and so we assume
0 < My < 400 and 0 < My < co. Let a be any positive number less than

M, let zo be such that |f/(zp)] > a, and let u = mf'(xo). Consider the
real-valued function ¢(z) = u - f(z). Let No, Ny, and Ny be the suprema of
lo(z)], [¢'(z)], and [p"(z)| respectively. By the Schwarz inequality we have
(since [ul =1) Ny < My and Ny < My, while N7 > (,0(:110) = ff/(xo)l >a. We
therefore have a2 < 4NoNy < 4MoM,. Since a was any positive number less
than M7, we have M2 < 4MoMs, i.e., the result holds also for vector-valued
functions.

Equality can hold on any R™, as we see by taking f(z) = (f(z),0,.. -, 0)
or f(x) = (f(z), f(z),... , f(z)), where f(x) is a real-valued function for which
equality holds.

Exercise 5.16 Suppose f is twice-differentiable on (0,00), f” is bounded on
(0,00), and f(z) — 0 as z — co. Prove that f/(z) — 0 as z — oo.

Solution. We shall prove an even stronger statement. If f(z) — L as z — oo
and f'(z) is uniformly continuous on (0,00), then f/(z) — 0 as z — oo.

For, if not, let £, — oo be a sequence such that f(z,) > ¢ > 0 for all n.
(We can assume f (z,) is positive by replacing f with —f if necessary.) Let §
be such that |f'(z) ~ f'(y)| < g if |z —-y|] <6 We then have ' (y) >v—26- if
ly — zn| < 6, and so :

(@0 +8) = flan - 6) 228 = = 8=,
But, since 6e > 0, there exists X such that
N
\f(z) - L] < -2—65
for all z > X. Hence for all large n we have

[f(@n+6) ~ f(zn - 6)| < (@0 +8) = LI+ |L - f(z - 6)] < 6,

and we have reached a cohtradiction.
The problem follows from this result, since if f” is bounded, say |f"(z)] < M,
then |f'(z) — f/(y)| < M|z - yl, and f’ is certainly uniformly continuous.
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Exercise 5.17 Suppose fisa real, three times differentiable function on -1,1],
such that '
Q

rove that f©)(z) > 3 for some z
r

o

/ 1 1)
J > (-1,1).
Note that equality holds for (23 + z2).
Hint: Use Theorem 5.15 with oo = 1 and B = %1, to to show that there are
s €(0,1) and ¢ € (~1,0) such that

&)+ 1O0) = 6.

Solution. Following the hint, we observe that Theorem 5.15 (Taylor’s formula
with remainder) implies that

f1) = FO)+£0)+ 37700+ 17O(s)
D = 50 = 1O+ 370) - O

for some s € (0,1), ¢t € (=1,0). By subtracting the second equation from the
first and using the given values of f (1), f(=1), and f'(0), we obtain

1= 2(f9 () + FO 1),

which is the desired result. Note that we made no use of the hypothesis f(0) = 0.

Exercise 5.18 Suppose f is a real function on [a,b], n is a positive integer,
and f("=1) exists for every t € [a,b]. Let o, 8, and P be as in Taylor’s theorem

(5.15). Define
_ @) =B
| Q) = 4§
for t € [a,b], t # B3, differentiate

ft) - £(8) = (t - B)Q()
n — 1 times at ¢ = «, and derive the following version of Taylor’s theorem:

Qn—l n
16 =@+ (s -y

Solution. The function Q(t) is differentiable n—1 times except possibly at ¢t = 3,
so we don’t have to worry when differentiating n — 1 times at t = o. It is easy
to prove by induction that

F®@E) =t~ )W () + kQ*-V (1)
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for 0 < k <n—1. Hence

1 _
k_!f(k)(a)(g_a)k - @—:—)—Q(k)(a)qu (([Z_cg O( D(g).

Thén, because the sum telescopes, we find

= ®)(a) Q" ()
};T(ﬁ—a)k:ﬂﬂ)- PR

which can be rewritten as

L Q" V(a)

6o

Exercise 5.19 Suppose f is defined in (=1,1) and f'(0) exists. Suppose —1 <
an < fPn<1,a,—0,and 8, — 0 as n — oo, Define the difference quotients

F(Bn) = F(on)

Dn: /Bn_an

Prove the following statements:

(@) If an < 0 < By, then lim D,, = '(0).

(0) If 0 < a, < B, and Bn/(Bn — ) is bounded, then lim D, = f'(0).
(c) if f' is continuous in (1, 1), then lim D,, = f/(0).

Give an example in which f is differentiable in (=1,1) (but f is not contin-
uous at 0) and in which o, Br tends to 0 in such a way that lim D,, exists but
is different from f/(0).

Solution. We assume that anfBn # 0 throughout, i.e., that neither a, nor 3, is
Zero.

(a) Write
_ f(Bn) - f(O) f(0) = flam)
Du = Bn — Bn — ay,
- ﬁn f(ﬂn) f(O) —Qn f(an) - f(O)
Bn — an Bn ,Bn = Qn Up .

Now let ¢ > 0. Choose § > 0 such that

flz) - £(0)

x

- f0) <e
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if 0 < |z| < 6. Then choose N so that 0 < 8, < 6 and —6 < an <0 forn>N.
Then for all n > N we have :

/Bn f(ﬂn) - f(O) ’ /
— f < - 0
Dr=fO < g2 | Bt - po) +
—Qp f(an) - f(0) ’
* 611 — Qn Ay, f (O)(
Bn ! —Qp
< Brn — an€+ Bn — an€
= g. :
Bn Qnp
(b) If 3 < M for all n, and 0 < o, < B, then surely — < M for
all n. H%nce i £ > 0 is given, choose N so that " "

flz)-f00) €

’ T - f (O)l < 2M

if 0 < |z| < 6. Then choose N so that 0 < 3, < § (hence also 0 < o, < 6) for
n > N. Then for all n > N we have

Do fO) < |t o)+
n n/ 0 7
+ﬁnfian fla Ln U >—f(0>[
/81’1. 9 + an\ 34
/Bn—"an 2M 5ﬂ._an 2M
< E.

(c) By the mean-value theorem there exists Yn between a, and B, such that
Dr, = f'(yn). Since v, — 0 and f’ is continuous, it follows that D, — f/(0).

Let f(z) be any function such that f’(0) exists but Iin%) f'(z) does not exist.

We know that f'(z) does not tend to infinity as z — 0, since if it did, we
would have [f'(z)| > 1 + [f'(0)] for all sufficiently small nonzero z, and this
contradicts the intermediate-value property of derivatives. Hence there is a
sequence =, — 0, z, # 0, such that nlirgo f(zn) = L # f'(0). Let B, = zn,, and

let ¥, be such that 0 < [Yn — Tn| < %lxnl and
S (yn) — f(zn) _ fl(xn) < |L — f/(O),

Yn — Tn 2n

It is then immediate that

lim S () — f(zn)

n—oo yn — Ty

=L # f(0).

A suitable example of such a function f(z) is
flz) = {Ozsin (2), z#0,

z=0.
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In this case we can get the counterexample in a slightly different form by taking
. We then have f/(0) =0 and

nd !
Tp = — and y, = ———
2mn Y 2r(n+ 1)

f(yn) - f(xn) _ 2n . 2

Yn — Tn T(n+1) 7w

Exercise 5.20 Formulate and prove an inequality which follows from Taylor’s
theorem and which remains valid for vector-valued functions.

Solution. There is a variety of possibilities, of which we choose just one: Suppose
f(z) has continuous derivatives up to order n on la,b]. Then there ezists c €
(a,b) such that

#6) = Pl < [ZD g g

To prove this assertion true for a vector-valued function f , we merely observe
that it holds for each scalar-valued function u-f if u is any fixed vector of length
1. It is obviously true if |f(b) — P(b)] = 0, and in all other cases it follows by

P(b)).

taking u =

o -po

Exercise 5.21 Let E be a closed subset of R!. We saw in Exercise 22, Chap.
4, that there is a real continuous function f on R whose zero set is E. Is it
possible, for each closed set F, to find such an f which is differentiable on R!,
or one which is n times differentiable, or even one which has derivatives of all
orders on R'?

Solution. Yes, it is possible. The proof depends on the following lemma:

Let a and b be any real numbers with a < b, and let f(z) be defined for all
real numbers = by the formulas

ezz—@l(z—b), a<z<hb,
flz) =

0, z<aorzxz>b.

Then [ has derivatives of all orders on R,

It is obvious that f has derivatives of all orders at every point except possibly
a and b. To prove that derivatives exist at these points we need two sublemmas:
For each nonnegative integer n there erists q polynomial p,(z,w) such that

1 1
T—a' z-b

@) = e

fora <z <b.
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The proof of this sublemma uses only the partial-fraction decomposition

1 1{1 1}’

(z—a)(z—-b) b-—alz—b z-a

together with the chain rule and the fact that the partial derivative of a poly-
nomial is again a polynomial. We omit the details. ,
The second sublemma is stated as a formula: For every nonnegative integer
n}
em
lim ————— =0.
zla (z —a)"
Its proof is a consequence of Taylor’s formula. To be specific, Taylor’s formula
with remainder implies the following result:
For each nonnegative integer k and each positive number t
et > %tk .

This last result follows easily since there is a point #; € (0,t) for which

; ) t2 .tk—l etk .
e=ldtt—t b — S
BTN oy Rl
every term in this last sum is positive, and et* > 1.
. . 1 .
We now apply this result with k = n and t = , to obtain
. (z ~a)(b-2z)
1 1
TEH =
e TmRE=H
< nlb—2z)*(z —a)"
foralln =0,1,.... In particular
eTIET < nl(b—a)"(z — a)” = K,(z —a)".
Since the kth defivative of e TIE) is a polynomial in and 3 each

zT—a -
derivative also satisfies such an estimate. It follows from this last result that

. 1 1 1
11mp< , >e<z—a)<z—b) =0
zla z—=b'z—a .

for any polynomial p(z,w), and hence that f™(a) = 0for all n. The proof that
F™)(b) = 0 is similar. We observe that the zero set of f(z) is the complement
of the open interval (a,b).

Identical reasoning shows that the function

1
ee—=, x> aq,

0, z < a,
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has derivatives of all orders, and its zero set is the complement of the semi-
infinite open interval (a,+00). A similar function can be constructed for g
semi-infinite open interval (—oo, b).

Now let F be any non-empty closed set. The complement of F' consists of
a countable set of pairwise disjoint finite open intervals (ak,br), together with
possibly one or two semi-infinite open intervals. Define f(z) to be zero on F,
let f(z) = eTa0E=5 in each finite open interval complementary to F with
endpoints in F, f(z) = e== for & > a if the complement of F contains a
semi-infinite interval (a,+o0) with endpoint @ € F, and f(z) = 5 if the
complement of F contains a semi-infinite interval (~o0,b) with endpoint b & F.

It is now obvious that [ 1s zero precisely on F, and that F has derivatives
of all orders at each point of the complement of F and at each interior point of
F.

It remains to be shown that f has derivatives of all orders at each boundary
point z of F. There are actually 4 cases to consider, but all are handled alike,
and we shall settle for Jjust one typical case, in which there is a decreasing
sequence of points z,, € F, Zp — , and a decreasing sequence of points y, & F,
Yp — Z, but no increasing sequence of points z, € F, 2p — z. This means either
T = by for some k or z = b. Now for each y such that z < y < z3 there is a
complementary interval to F, say (a;, ) (z,z1), with a;, < Yy < bg. Then for
all nonnegative integers and n we have

0<f“%D<KAMy—mW<lQ¢@-xV

where K, 1 is a positive constant independent of I, hence independent of y. It
therefore follows, upon taking n = 2 that if Z1 >y >z, then

"f(y)—f(x)
(y ~ )

, < Kooy — z)

(We have just proved this inequality for y ¢ F, and f (¥)=flz)=0ify e F)
Hence the right-handed derivative ,

! ) = 1 L) — £(2)
=T
~is zero. That the left-hand derivative is zero follows from the fact that z — by

or z = b. Hence f/(z) = 0. We now assume by induction that FED () = @
Then the inequality f*-V(y) < 2k-1(¥ — z)? shows that

(k=1)
®) () = fim L0 D) _
fi(z) ylg v -z 0.

Again, the left-hand kth derivative is zero since z = br or z = b. It follows
easily that f*)(z) exists and equals zero for all k.
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Exercise 5.22 Suppose J is a real function on (—00,00). Call z & fized point
of fif f(z) = z. A

(a) If f is differentiable and f'(t) £ 1 for every real t, prove that f has at most
one fixed point.

(

b) Show that the function f defined by |
Fl)=t+(1+e)"!

has no fixed point, although 0 < f/(¢) < 1 for all real ¢.

- (¢) However, if there is a constant A4 < ] such that |f'(t)] < A for all real t,
prove that a fixed point z of f exists, and that z = lim Zn, Where z, is an
arbitrary real number and

Tny1 = f(zn)
forn=1,2,3,....
(d) Show that the process described in (c) can be visualized by the zig-zag path

(21, 22) — (22,22) — (22,73) — (z3,23) — (z3,24) — - - -

Solution. (a) If a function f(z) has two fixed points = and y, r # Yy, the
mean-value theorem implies that there exists a point z between z and y such
that

y=z=fy) - f(z) = f'(2)(y - z),

so that f'(z) = 1.

(b) The equation f(t) = ¢ implies that (1+€*)~! = 0, which is clearly impossible,
t

while f'(¢) =1 - __e“t)z always lies in (0, 1).

(1+e

(¢) Since f’ is bounded, f is uniformly continuous, and we observe that the
sequence {z,}52 ; is a Cauchy sequence. Indeed, if n > m > N, we have

[Zn — Tm| < [Zn —~ Tn-1| + |Tn—1 — Tp—a|+ -+ ’$m+1 — Ty

Now it is eaéy to show by induction, using the mean-value theorem and the fact
that |f'(z)] < A for all 2, that

|Tni1 = 20| < A"z, ~ 31
for n > 1. We therefore have
[Zn = Tm| < oy —ap|(AP2 L AmB 4L A™1)
< —I—Am‘llxg — 2]

<

Since 0 < A < 1, it follows that AN S 0as N — 00, and so this is a Cauchy
sequence. Let its limit be 2. We claim that is a fixed point. Indeed, z =
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P3 P, 4
| . \\
P, Nl

/

Figure 5.1: Finding a fixed point

im 2z, = lim z,.; = lim f(zn) = f(lim Tn) = f(z), since f is continuous.
N~ 00 n—o0 n-—o0 n—00

There can of course be only one fixed point because of the result proved in (a).
(d) The procedure described can be depicted on the graph of the function f,
i.e., the set of points (z, f(z)), as follows: Let z1 be any abscissa; locate the
point (21, f(z1)) on the graph. Thereafter, for each point (z,,y,) located on the
graph, let the abscissa of (Zn+1, Yn+1) be the ordinate of (Tny Un), L6, Zpyq = Yn.
Thus, from a point (Zn,Yn) on the graph of f we move horizontally to the line
Y = z, then vertically back to the graph of f. It is clear visually that this
process leads to the point of intersection of the graph of f with the line Y=z, as
illustrated in Fig. 1 for the case of f(z) =2—1z where P, = (2,1),.P, = (1,1),

3 33 35 2 55 T

Ps=(1,3), P, = (3,3), P = (5,4—), and Py = (Z’Z)' (The fixed point is
(%, %), which is the point of intersection of the graph of f and the line y=z.)

Exercise 5.23 The function [ defined by

3 +1
3

f(z) =
has three fixed points, say a, 3, v, where
—2<a< -1, 0<pB<1, l<y<a.

For arbitrarily chosen 1, define {z,,} by setting Tni1 = f(z,).
(@) If 21 < a, prove that z, — —oo as 1 — co.

(6) If @ < 21 < v, prove that ZTn — B asn — oo.

(c) If ¥ < 21, prove that Zn — +00 a8 n — 00,
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Thus 3 can be located by this method, but o and v cannot.

Solution. We shall make use of the auxiliary functions

(1) = flx)—x = Vv _
g\z)=J\z) 3
e @-g6)
9(z) ~g(B
3 z i
h(z) = z-p i
9'(8) z =f,
2 2 ’
ie., g(z) = oAbzt B 1. We observe that the fixed points of f are the zeros

of g. Since g(~2) = -1 <0, g(-1) =1 > 0, 9(0) = 3 >0, g(1) = -3 <0,
and g(2) = 1 > 0, the intermediate value theorem shows that a, B, and v are
located in the intervals they are asserted to be in.

Since g(a) = g(8) = g(7) = 0, it follows that h(c) = h() = 0. Since h is a
quadratic function, it has only the two zeros o and 7, and in particular A(z) is

negative for a < z < 7. Now the minimum value of h(z) is attained at z = —%,
2

and this minimum value is ¢, where ¢ = =~ — 1. Thus -1 < ¢ < 0. In particular,
for o < z < v there is a number r € (0,1) such that

f@)-z=r(B~2z),

B F(z) — B = s(z — B),

where s = 1 - is also in the interval (0, 1). This means that f(z) -8 and z— 3
both have the same sign, but that |f(z) - B] < |z - B]. Thus f(z) is always
between B and x. Therefore the sequence {z,} is monotonic and converges to
a fixed point in the interval whose endpoints are z; and 8. Since the only fixed
point in this interval is 3, the sequence must converge to S.

If z < o (resp. z > v), it is easy to see that f(z) <z (resp. f(z) > z). Thus
the sequence {z,} is monotonically decreasing (resp. increasing), and hence
either tends to —oo (resp. +00) or converges to a fixed point ¢ in the interval
(—00,z1) (resp. (z,-+00)). Since there are no fixed points in this interval, it
follows that z,, — —oo (resp. z, — +00).

Exercise 5.24 The process described in part (c) of Exercise 22 can of course
also be applied to functions that map (0,00) to (0, 00). -
Fix some a > 1, and put

CEHE NPERE
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Both f and ¢ have V@ as their only fixed point in (0,00). Try to explain, on
the basis of properties of f and g, why the convergence in Exercise 16, Chap. 3,
is so much more rapid than it is in Exercise 17. (Compare f’ and g’, draw the
zig-zag suggested in Exercise 22.)

Do the same when 0 < o < 1.

Solution. We recall that in Chap. 3 we proved that the first function leads to
1Zn — /@] < Ar?" for some r € (0,1), while the second leads only to |z, ~/a| <
Ar™. The exact values of A and 7 depend on « and z1.

The best explanation of the difference between the two methods is that

f@-va = 2oy, g
o@)-va = Ve, o

142z

I

ll

The first of these makes it plain that if z > va, the same will be true of f(z),
though f(z) will be closer to o than z by a factor that is at most % and tends to
Zero as z tends to 1/, i.e., the relative improvement in accuracy itself improves
as the recursion proceeds. The second equality shows that 9(z) —  is on the
opposite side of v/& from z if ¢ > 1, though closer by a factor that is at least
1-Va

the absolute value of . Hence the relative Improvement in accuracy as

Ty
the recursion proceeds is limited.

In terms of the zigzag pattern, when we use g, the zigzag keeps circulating
around the point of intersection of the graph of g and the line y = z instead of
moving steadily toward it in a staircase pattern. :

When 0 < o < 1, the zigzag does stay on one side of the point of intersection
of the two curves. However, the relative improvement is still at best 2 factor of
1-Va

2

when z is close to /a.

Exercise 5.25 Suppose f is twice differentiable in [a,b], f(a) < 0, f(d) >0,
f(z)>6>0 and 0 < f(z) <Mforallz e [a,b]. Let ¢ be the unique point
in (a,b) at which f(¢) = 0,

Complete the details in the following outline of Newton’s method for com-
puting &. ‘ :
(a) Choose z; ¢ (&, 0), and define z,, by

fzn)"
Interpret this geometrically, in terms of g tangent to the graph of f.
(b) Prove that z,.; < Zn, and that

Inyl =2z,

lim z, = ¢
n—o0
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(c) Use Taylor’s theorem to show that

for some t, € (§,7,).
(d) If A= M/28, deduce that

n

0< Tt —€< %[A(ifl -1,

(Compare with Exercises 16 and 18, Chap. 3.)

(e) Show that Newton’s method amounts to finding a fixed point of the function
g defined by
f(z)

9(z) =z - =%

f'=)
How does ¢'(z) behave for z near &7
(f) Put f(z) = 2/% on (—o0,0) and try Newton’s method. What happens?

Solution. We remark at the outset that z1 can be found by trying z, = ﬁz‘—b
If f(20) > 0, take z; = z5. Otherwise let Znt+1 = (b+ 2,)/2, and let z; be the
first 2, for which f(2,) > 0. (In a finite number of steps we must reach such a
point since z, T b and f(b) > 0,) ‘
(a) The tangent line to the graph of f at the point z,, has the equation y —
f(zn) = f'(zn)(z ~ z,). Setting y =0 in this equation and solving for z gives
T = ZTn11. Thus the interpretation of Newton’s method is that we approximate
the point where the graph of f intersects the z-axis by the point at which its
tangent line at (z,, f(z,)) intersects the z-axis.
() We can assume by induction that f(z») > 0, and hence, since f’ (zn) >0,
it follows immediately that ZTnt1 < Zn. Notice that there exists ¢ between T
and 1 such that F(Znt1) = flzn) — () @n = 2np1) > f(@n)~ F (zn)(zn —
Tny1) = 0 since f'(c) < f'(z,) and z, — Zn+1 > 0. Thus it follows that
§ < Zny1 < z,. Hence {z,} converges to a limit n satisfying n = & Now,
however, we have :

f(n)

Wzn—m,

from which it follows that f(n) =0, i.e., n=_¢.
(¢) The required equality can be written as

_ f(zn) — f”(tn)
fllzn)  2f'(zy)

while Taylor’s theorem can be written as

Zn '—f ($n _6)27

76) = Flon) + £on)le ~ ) + L8 e g2
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Since f(£) = 0, it is clear that these two equations are equi{falent.
(d) Since 0 < f"(tn) < M and f'(zn) > 6, we have '

0 Zni1 - €< Az, — €)%

In particular
1

U<z -6 < Az ~¢)? = 7 [Alz = Q)P
and then an easy induction gets the general result,
We found this kind of convergence in Exercises 16 and 18 of Chap. 3 with
the recursion relation

-1
T + gx;p'*'l.
p

Ipyy =

We now recognize this recursion as Newton’s method for the function flz) =
z? — a on the interval [I, Va + 1. Exercise 16 of Chap. 2 was the special case
p=2.

(¢) Obviously the equation g(z) = z is equivalent to the equation f(z) = 0.

f(z)f"(z)

Since ¢'(z) = W’ we see that ¢'(z) tends to zero as z tends to ¢,

i.e., the graph of 9(z) meets the line Y =z at a 45° degree angle at the point
(&) |

(f) The fixed point of f(z) is £ = 0. However f'(z) = 00 asz — 0, and f(0)
does not exist. This destroys the convergence of Newton’s method. In fact, if
Zn # 0, then Tnt1 = —2Z,, so that z, oscillates wildly: lim Supz, = +oo,
liminfz, = —co.

Exercise 5.26 Sﬁppose [ is differentiable on [a,0], f(a) = 0, and there is a
real number A such that | (@) < Alf(z)| on [a,b]. Prove that f (z) =0 for all
T € [a,b]. Hint: Fix z,, € [a,b], let

Mo =sup [f(z)], M;=sup|f'(z)|
for a <z < 4. For any such z,
If(x)l < Ml(xo - Cl) < A(.’L‘o - Q)Mn.

Hence My = 0 if A(zo — a) < 1. That is, f=0 on [a, zo]. Proceed.

Solution. If we anticipate the fundamental result that the function flz) = e
satisfies f/(z) = f (), Exercise 2 above yields the result that In 7 is differentiable
and has derivative % Hence by the chain rule for any positive differentiable
[(=)
f(z)

(Unfortunately this fundamental result is not proved until Chapter 7, so we shall

function f(z) the function 9(z) = In f(z) is differentiable and ¢'(z) =
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just have to wait. However, since certain other functions such as sinz and cosz
have been introduced without any formal definition, and their derivatives have
been assumed known, we might as well continue along this line of reasoning.)

Now suppose there is an interval (c,d) C [a,b] such that f(c) = 0 but
f(z) # 0 for ¢ < z < d. By passing to consideration of —f(z) if necessary, we
can assume f(z) > 0 for ¢ < z < d. The function g( z) = In f(z) is then defined
for ¢ < z < d, and its derivative satisfies

| <

The mean-value theorem them implies that
c+d d—-c

> -
o) 2 9(5~) ~4(5)

for all z € (c,d). But this is a contradiction, since g(z) — —oco as  — c.

This finishes the proof, except that it assumes we know the derivative of
e”. If we don’t assume that, we have to fall back on the hint. In that case, let
Zo = a+ 5y, and let Mo = sup{|f(z)|: @ < z < z0}. We then have

lg'(z)] =

7(@)] < Mi(s ~ a) < AMo(zo — a) = 2 Mo

for all z € [a,z0]. But By definition of My this implies My < —1-Mo, so that

My <0, ie., My =0. We now start over with a replaced by zo, £; = 2o + %
In a finite number of steps, we will have b < z, + so that f(z) = 0 for

a<z<b

'2—;{’

Exercise 5.27 Let ¢ be a real function defined on a rectangle R in the plane,
given by a <z <b, a <y < B. A solution of the initial-value problem

Yy =¢(z,y), yla)=c (a<c<pP)

is, by definition, a differentiable function f on [a,b] such that f(a) = ¢, a <
f(z) £ 8, and

(@) =¢(z, f(z)) (a<z<b).
Prove that such a problem has at most one such solution if there is a constant
A such that ' -
|6(z,y2) — (z,y1)| < Aly2 — 1]

whenever (z,71) € R and (z,¥s) € R.
Hint: Apply Exercise 26 to the difference of two solutions. Note that this
uniqueness theorem does not hold for the initial-value problem

y =92, y(0) =0,



90 CHAPTER 5. DIFFERENTIATION

which has two solutions: f(z) =0 and f(z) = £2/4. Find all other solutions.

Solution. Following the hint, we observe that if f(z) = fo(z) - f1(z), then

l9'(@)] = [fi(z) - fi(z)]
= |8(z, f2(z)) — &(z, f1(z))]
< Alfe(z) - fi(z)]
Alg(z)]. -

By the initial condition 9(a) = fa(a) - fi(a) = c — ¢ = 0. Hence by the
preceding exercise g(z) =0 for all z € [a, b].

As for the equation ¢ = VY, if f(z) is a solution and f(z) > 0 on an
interval (a,b), while f(a) = 0, we observe that 9(z) = \/f(z) satisfies ¢’ (z)

5(F(@)"V2f (z) = 3» S0 that for some constant ¢ we have 9(z) = 3(z + o).

Thus

1
£(z) = (9(e))? = F(a + )%
— 2

Since f(a) = 0, it follows that ¢ = —a, ie., f(z) = Lx—élﬁ)—‘ Thus the only
possible solutions are

. 0, 0<z<a,

f(z) = (z — a)?
: 1 , a<lz

Herea > 0 is arbitrary.

Exercise 5.28 Formulate and prove an analogous uniqueness theorem for sys-
tems of differential equations of the form

y_;=¢_7(m,y1>’yk)7 yJ=CJ (j:l,,k)

Note that this can be rewritten in the form

y = ¢(w,y), y(a) =c,

where y = (yi,... ,Yk) Tanges over a k-cell; @ is the mapping of a (k + 1)-cell
into the Euclidean k-space whose components are the functions ¢, ... , @k, and
c is the vector (cy,. .. y¢k). Use Exercise 26 for vector-valued functions. '

Solution. The result is the following:

Let ¢ be a vector-valued function defined on a (k +1)-cell D = la,b] x C in
RF1 whose range is contained in R*, and suppose that there exists a constant
A such that

|6(z,v2) = $(z,1)| < Alys — v
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for ally, € C, yo € C. Then the initicl-value problem

y'=d(z,y) yla)=c

has at most one solution y : la,b] — C.

./ The main tool needed to prove this result is the analogue of Exercise 26
for vector-valued functions, which does hold. Indeed the proof is identical,
considering that the original proof depends only on the inequality If(d)—f(e) <
|f'(r)](d—c) for some r € (c,d), and this inequality is certainly valid for vector-
valued functions. Once that result is obtained, the preceding exercise can be
applied verbatim.

Exercise 5.29 Specialize Exercise 28 by considering the system

Yi = Y1 (G=1,...,k=1),

k
v = fl@)=) g;(@)y;,
j=1
where f, g1,.. ., g are continuous real functions on [a,b], and derive a uniqueness
theorem for solutions of the equation
v + @y D+ o)y + gr(2)y = f(a),
subject to initial conditions
y(a)=c1, y@)=cy ..., y* V() = ¢.

Solution. We let y = (y1,y2,us,...,y) = @y, 9",...,y* D) and ¢(z,y) =

k
(yg,yg, s Ye fZ) = 3 gj(m)yj). We then observe that if Vi = (yi,... yYik),s
’ =
then

k
I¢<$7y2) - ¢(x:YI)I = l<y22 — Y12,¥23 — Y13, .. "Zg]'(:c)(ylj - y2j)) I
=1

If M =sup{|g;(z)|: a <z <b 1 < J <k}, we then have

b
|P(z,y2) = d(z,y1)] < (M + DY lyas = w1l < k(M + Dly2 — 1.

=1

This provides the hypothesis of the theorem for any (k + 1)-cell [a,b] x C
whatsoever in R*+1. Hence there is at most one solution to this initial-value
problem.
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