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Chapter 6

The Riemann—Stieltjes
Integral

Exercise 6. 1 Suppose « increases on [a,b], a < 1o < b, a is continuous at :1:0,
f(zo) =1, and f(z) = 0 if z # xo. Prove that f € R(c) and that [ fda =

Solution. Let € > 0, and let § be such that la(x) ~a(xo)| < € if |z ~ zo| < 6.
Now con51der any partiion a =t < t; < --- < t, = b with n > 2 such that
|t; — ti—1] < £. There exists an index i such that £;_1 < 2o < t;41 (there may

possibly be 2 such indices). We then have, for any choice of (799 2SN
| Z F5)(alt) = alt—))| < UFE)ladts) - oftis)] +
=1

+ () llaltiv) — ()]
< Q{(ti_H) - a(ti_l) <E. »

By definition of the Riemann-Stieltjes integral, this means that f € R(a ) and
[fda=0.

Exercise 6.2 Suppose f > 0, f is continuous on [a,d], and / f(z)dz =
Prove that f(z) = 0 for all z € [a,b]. (Compare this with Exercise 1.)

Solution. Suppoée f(zo) # 0 for some zo € [a,b]. Since f(z) is continuous

f(zo) > 0, there exists § > 0 such that |f(z) — f(zo)] < X f(zo)

for all z € [a,b] such that |z — zo| < 6. Let n = min(§, max(zy ~ a,b — Zo)),
so that 7 > 0. Let I be the interval [zq — 7,z0] if it is contained in [a, b];
otherwise let I = [z0,Zo + 7]. Whichever is the case, I C [a, b] and f(z )

on [a,b] and
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f(zo) + (flz) = f o)) > flzo) — |f(z) — f(zo)| > f(;o) for all z € I. The
s fi(z (

LRy Gt

are both nonnegative, bounded, and continuous except possibly at the two end-
points of the interval I. They are therefore both Riemann-integrable. Consid-
eration of Riemann sums shows that

- E
| nwdzzng,

and \
/ fa(z)dz >0,
a

It therefore follows that

b b b
/af(m)d:cz/afl(x)dx-}-/afg(m)dmzn—;->0,

b
contradicting the hypothesis that / f(z)dz = 0.

Exercise 6.3 Define three functions 1,82, 8s as follows: B;(z) = 0 if z <0,
Bi(z)=1ifz >0 for j=1,2,3 and B1(0) =0, B2(0) =1, B3(0) = 5. Let f be
a bounded function on [—1,1].

(a) Prove that f € R(f,) if and only if f(0—) = f(0) and that then

[ 1a8:= 0

(b) State and prove a similar result for fs.
(¢) Prove that f € R(8s) if and only if f is continuous at 0.
(d) If f is continuous at 0, prove that

/fdﬁ1=/fdﬂz=/fdﬁa=f(0)-

Solution. Let to < t; < -+ < ta_1 < tn be any partition of any interval
containing 0. Since the upper Riemann-Stieltjes sums become smaller and the
lower ones larger when a point is added to any partition, in deciding whether
a function is integrable or not, we may assume that 0 is one of the points of
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the partition. Let &k be the index such that ¢ = 0, so that the upper and lower
-Riemann-Stieltjes sums

™
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and

S ma(Bs(ts) - Bi(tio1)), 5 =1,2,3,

Mpy_1 + Mg Mp—1 + Mg
— and —
(a) Since my < f(z) < My for 0 < z < tr4 in the first case, the sets of
upper and lower sums contain elements arbitrarily near to each other if and only
if for each € there is a partition with My — my < €. If such a partition exists,
let § = tr41. Then we have |f(z) — f(0)] < My —my <efor 0 <z <4, and
hence x{i_)rg_'_ = f(0). Conversely, if xEIchl.;. = f(0), then for any €, let 6 > 0 be

such that |f(z) — f(0)] < 6§ if 0 < 2 < §, and let P be a partition with ¢; =0,
tre1 < 6. It is then clear that both upper and lower Riemann sums differ from

f(0) by less than ¢, i.e., /fdﬂl = f(0).
(b) f € R(Bs) if and only if lim f(z) = £(0) and if this condition holds,

are respectively My and mg, Mi—1 and mg_1,

then / fdBs = f(0). The proof is identical to the proof just given, except that
“4+” is replaced by “~.”

(c) In the third case, the upper and lower Riemann-Stieltjes sums differ by
(M — mp) + (Mg—1 + mg—1
2
0 for which this difference is less than —;—, let 6 = min(tgr1, —tg—1). Then for

. If, given &, there exists a partition containing

-6 < z < 6 we certainly have

My —my Mg —mp_1

£(2) = F(0)] < max (=2, 2

so that f is continuous at 0. The same argument shows that in this case

[ 8= s

) < Mp—mp+Mi_1—mp_1 <,

(d) This result is contained in (a)—(c).

Exercise 6.4 If f(z) = 0 for all irrational z, f(z) = 1 for all rational z, prove
that f ¢ R on [a,b] for any a < b.

Solution. Every upper Riemann sum equals b — a, and every lower Riemann
sum equals 0. Hence the set of upper sums and the set of lower sums do not
have a common bound.
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Exercise 6.5 Suppose f is a bounded real function on [a,b] and f? € R on
la,b]. Does it follow that f € R? Does the answer change if we assume that
f2eRr?

Solution. The integrability of f2 does not imply the integrability of f. For
example, one could let f(z) = —1 if z is irrational and f(z) = 1 if z is rational.
Then every upper Riemann sum of f is b — a and every lower sum is a — b.
However, f2, being the constant function 1, is integrable.

The integrability of f* does imply the integrability of f, by Theorem 6.11

with p(u) = Ju.

Exercise 6.6 Le P be the Cantor set constructed in Sec. 2.44. Let f be a
bounded real function on [0,1] which is continuous at every point outside P.
Prove that f € R on [0,1]. [Hint: P can be covered by finitely many segments
whose total length can be made as small as desired. Proceed as in Theorem
6.10.]

Solution. Let M = sup{|f(z)|: a < £ < b}, and let € > 0 be given. Cover
P by a finite collection of open intervals O = G (ai, b;) such that Z:(bZ -

a;) < :1%4— Let 0 = inf{lz —y|: =z € P,y € [a,b] \ O}. Since z and y
range over disjoint compact sets, 6 is a positive number. On the compact set
E = {z : d(z,P) > 30} the function f is uniformly continuous. Let § > 0 be

such that |f(z) — f(v)] < Q(ba__ a)

any partition {¢;} of [a,b] with max(t; — t;_1) < min(6, £6). The difference
between the upper and lower Riemann sums for this partition can be expressed
as two sums:

if z,y € E and |z — y| < 6. Then consider

> (M —my)(t; ~ tj_1) = Ty + T,

- where ¥ contains all the terms for which [¢;_1,,] is contained in F and I, all
the other terms. It is then obvious that

£ £
P — R < —
21 < 2(b—-a) § :(tJ tJ 1) - 2’

and, since each interval [t;_;,¢,] that occurs in £, is contained in O,

€ €
Yo <2M-—— = -,
2 aM " 2
Therefore the upper and lower Riemann sums for any such partition differ by

less than ¢, and so f is Riemann integrable.

Exercise 6.7 Suppose f is a real function on [0, 1] and f € R on [c, 1] for every
¢ > 0. Define

| /O.lf(a:)d:z:: lim /clf(az)da:

c—0+



97

if this limit exists (and is finite). ,

(@) If f € R on [0, 1] show that this definition of the integral agrees with the
old one.

(b) Construct a function f such that the above limit exists, although it fails to
exist with |f] in place of f.

Solution. (a) Suppose f € R on [0,1]. Let ¢ > 0 be given, and let M =
sup{|f(z)]: 0<z <1}. Letce <0 m] be fixed, and consider any partition of
[0, 1] containing ¢ for which the upper and lower Riemann sums > M;(t; —1;-1)
and Y m;(t;—t;—1) of f differ by less than Z Then the partition of [c, 1] formed
by the points of this partition that lie in this interval certainly has the property
that its upper and lower Riemann sums Y 'M;(t; —t;j-1) and 3 'm;(t; —t;_1)
differ by less than Z Moreover, the terms of the original upper and lower

Riemagnn sums. not found in the sums for the smaller interval amount to less
than T In short, we have shown that for ¢ < -—— and a suitable partition

4M

containing c,

ZM j—tj_1) ——</ f:c)da:<<2m3 tj—l)"{'z .
and
S‘/M( _71——</ f(xd:v<2m3t—+4.

Moreover, we have also shown that

, 5
DMt — 1) = ) My(ty — tm1) <3
and
€
ij(tj - tj__l) - Z'mj(tj - tj—l) < Z
combining these inequalities, we find that
1
:z:)dx—/ flz)dz| <¢
[s4
. €
if0<c< it
(b) Let .
f@)=(-1)"(n+1)
1
for i) <m»§ - n=1,2,.... Then if Nl <c< % we have

/cl flz)dz = (——1)N(N+1)(7b- —c) + Z (~]:)k
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1 1 1 1 .
Since 0 < — —¢c< — — = , the first term on the right-hand
N N N+1 NIN+1
arda fanda + are ag A | vrhila +hA grivn r\?‘\Y\v‘r\f\h]ﬁec‘ In 9 Haonra +thic intasral
DLlUT LTl o L LTIV ad> O J, U, Vv 111l LilT SWUlll ayyluabll [w i 8 3 gy A ALV ULELOD J.J.Lllcslaal

ds to
approaches a limit. However,

/Cllf(a:)ld:cz(N—Fl)<7]\'f——c)+ o

and in this case the first term on the right-hand side tends to zero as ¢ | 0,
while the sum tends to infinity.

Exercise 6.8 Suppose f € R on [a,b] for every b > a, where a is fixed. Define

/:o flz)dz = xli_)xgo/abf(x)da:

if this limit exists (and is finite). In that case, we say that the integral on the
left converges. If it also converges after f has been replaced by |f|, it is said to
converge absolutely.

Assume that f(z) > 0 and that f decreases monotonically on [1,00). Prove

that ' -
ﬁ f(z)dz

> f(n)

converges. (This is the so-called “integral test” for convergence of series.)

converges if and only if

Solution. Since both the series and the integral are increasing functions of
their upper limits, it suffices to show that they are bounded together. Define
f(z) = f(1) for 0 < z < 1. Then consider a partition of [0,7n] consisting of the

n—1

n+1 points 0,1,2,...,n. The upper Riemann sum for this partition is 2 fk)
k=0
and the lower Riemann sum is Z f(k). Hence we have
k=1
n n i n . n-—1 : _ n=1
S i< [ =0+ [ f@do< Y f0) = 10+ £
k=1 71 k=0 k=1

This shows that

n n n—-l
O+ Y 10 < [ sz <Y (o)
_ . k=1 1 k=1

and hence the sum and the integral converge or diverge together.
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Exercise 6.9 Show that integratibn by parts can sometimes be applied to the
“improper” integrals defined in Exercises 7 and 8. (State appropriate hypothe-
ses, formulate a theorem, and prove it.) For instance show that

/°° cos T /°° sinz
| dr= | ——"_dz.
o 1tz o (I+z)

Solution. Without striving for ultimate generality we can get the main ideas in
the following theorem:

Theorem. Let f(z) and g(z) be continuously differentiable functions defined on
[a,00) such that blim f(b)g(b) exists and the integral / f(z)g'(z) dx converges.
—00

a

Then/ f'(z)g(z) dx converges and

/ s mMm—th@M@—f@Mmﬂ—/mﬂ@d@Mm

b—co

Proof. For each finite value of b larger than a the standard rule for integration
by parts gives

b :
| 7 @lsta)ds = F0)9(6) - @)g(a) /f@g@m

The hypotheses of the theorem guarantee that the limit on the right exists.
Therefore, by definition, the integral on the left converges

Applying this result with f (z) =sinz, g(z) = _{_m, we find, since f(0)g(0) =
0 and hm f(b)g(b) = 0, while / f(z)g'(z) dz converges absolutely, that

/°° cosT /°° sinz
dr = ~——§dx.
o l+z o (1+2)

Exercise 6.10 Let p and ¢ be positive real number ssuch that

1 1

SeS=1,
P g ‘
Prove the following statements.
(a) f u > 0 and v > 0, then
P q
uy < v + P——
P q

Equality holds if and only if uP = 9.
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(b) if € R(a), g € R(a), f >0, g >0, and

rb nb
/fpda=1=/ ¢?da,
b
/fgdozs_l.

(c) If f and g are complex functions in R{a), then

{/ lflpda}l/p{ A ol do]

This is Holder’s inequality. When p = q = 2 it is usually called the Schwarz
inequality. (Note that Theorem 1.35 is a very special case of this.)

then

fgda

(d) Show that Holder’s inequality is also true for the “improper” integrals de-
scribed in Exercises 7 and 8.

Solution. (a) The inequality is obvious if either u = 0 or v = 0, and equality
holds in that case if and only if v = v = 0. Hence assume v > 0. Keep v

fixed. The 1nequahty implies that p > 1 and ¢ > 1, and hence the function
P

o(u) = Yy v uv satisfies
P q

lim ¢(u) = +oo.

U=> 00

We also have ¢’'(0) = —v < 0. Hence the function ¢(u) has a minimum at some
point ug on (0,00) at which 0 = ¢’(up) = ™" — v, ie., ug = vFT = 91 and
ugy = v9. Note that @(up) = 2— + 2 4971y = v — 9 = 0. Since this point is
the only critical point for ¢, we have ¢(u) > 0 for all u # ug, as required.

(b) Simply integrate the inequality

fer 9@
p q

flz)g(z) <

(c) The inequality is obviously equality if either of the two integrals on the right-
, b

hand side is zero. For the vanishing of, say / |f|P da implies the vanishing of
a

b _ : b
/ M| f|do and hence the vanishing of/ lg||f] de if |g(z)] < M for all z.

b b
Hence we now assume that / |fIPda > 0 and / lg]? da: > 0. In part (b) we

@ 9(2)
(7 151p dor)'” (/2 lglede) "

b b
hdaj g/ Ih| da.

replace f(z) by d g(z) by . We then need only

invoke the inequality
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(d) The inequality holds on each finite interval. If either of the factors on the
right-hand side diverges as b — oo, the inequality is obvious. If they both
converge, it follows that the left-hand side converges absolutely, and to a limit
not larger than the limit of the right-hand side.

Exercise 6.11 Let o be a fixed increasing function on [a,b]. For u € R(a)

define , L2
Il ={ [ wPaa}

Suppose f, g, and h € R(a), and prove the triangle inequality

If=nhlle < If —gll2+ llg = Al2

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37.

Solution. We have |
' b
IRl = / I - b da
b
- / (F = 9)+ (g WP da

b b b
= /If—glzda+2/ |f—gug—hada+/ g~ hl? do

< \f - gl +217 - gllzllg — hllz + llg — RII3
= (If = gllz + llg - Al2)%, .

from which the desired inequality follow when square roots are taken.

Exercise 6.12 With the notations of Exercise 11, suppose f € R(a) and € > 0.
Prove that there exists a continuous function g on [a,b] such that ||f — g]l2 < €.
Hint: Let P = {zo,...,Zn} be a suitable partition of [a, b], define

*jS—t

g(t) = Ao flzio1) +

t—xz;1

A.’Ei

f(z:)

if Ti—-1 S 4 _<_ Z;.

Solution. Since g(t) is defined on [z;—1,x;] as the weighted average of the values
of f(z) at the endpoints, the weights being proportional to the distances from
t to the endpoints, it is clear that g(t) is piecewise linear, hence continuous.
‘For the same reason the maximum value of the function h = |g — f| on the
interval [z;_1,z;] will be at most M; — m; where M, and m; are the maximum
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and minimum values of f on this interval. Let M be the maximum of | f(z)| for
a < z < b If the partition is chosen so that "

Z(M2 - mﬁ)[a(tz) - oz(ti_l] < %,

then we will have
Z(Mi - mi)z[a(ti?‘- a(ti-1] < 2M Z(Mi — my)[o(t) — a(ti—1)] < €,

and hence the upper Riemann integral for |g — f|? for this partition will also be
less than €2. Therefore ||g — f|2 < €, as required.

Exercise 6.13 Define
z+1
f(z) =/ sin(t?) dt.

(a) Prove that |f(z)] < 1/z if z > 0.
Hint: Put t? = u and integrate by parts to show that f(z) is equal to

cos(z?)  cos[(z + 1) /(m+1)2 cosu
2 2(z +1) 2 4ud2 T

2

Replace cosu by —1.
(b) Prove that

2z f(z) = cos(z?) — cos[(z + 1)?] + r(z),
where |r(z)| < ¢/z, and c¢ is constant.
(¢) Find the upper and lower limits of zf(x) as z — oo.
(d) Does [ sin(t?) dt converge?

Solution. (a) This inequality is obvious if 0 < z < 1. Hence we assume z > 1.
Following the hint, we observe that

f(a) cos(z?) cosf(z+1)% 1 1
* 2z 2(z +1) 2z 2(zx+1)
_ 1+4cos(z?) 1+ cos[(z+1)?
- 2z B 2(z+1)
< 1t cos(z?)
- 2z
1
< ot
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A similar argument shows that

cos(z?) cos[(z+1)? 1 1
f(z) 2(3:)_ 2[((x+1))]“5+2(x+1)
_ —l+cos(x®)  —1+cos[(z+1)%
2z 2(z+1)
—1+cos(x?) 1 - cos[(z+1)%
= 2z 2(x +1)
~1 + cos(z?)
- 2z
> 1
T

(b) The expression just written for f(z) shows that
2z f(x) = cos(z?) — cos[(z + 1)%] + r(2),

where

2
T /(’”'H) cosu

r(z) = <:r i 1) cos[(z + 1)%] - 3 —57 U

2

If we integrate by parts again, we find that

/(”H)z cosu . _ sinf(z +1)%]  sin(z?) L 3 /(m"'l)2 sinu "
T x

: ud/? v (z+1)3 z3 2 z5/2

2

We now observe that the absolute value of this last integral is at most

§/OQ ! dU:—u‘3/2

oo 3
—— :m .
2 72 '11,5/2

2

It then follows by collecting the terms that

ir(z)] < %

(c) Since r(z) — 0, the upper and lower limits of z f(z) will be the corresponding
limits of
cos(x2) — cos|(z + 1)?]
2

= sin (m2+x+-21—> sin(a:-&——;-).

We can write this last expression as sin ssin (s> + ), where s = z+ 2. We claim
that the upper limit of this expression is 1 and the lower limit is —1. Indeed,

. 9 —
let £ > 0 be given. Choose n to be any positive integer larger than 855
(1 1 2 1 1 2
Then the interval (Z + <<2n + 5)% — s) 1 + ((2n -+ 5)% + 5) ) is longer

. 1 : ,
than 27, and hence there exists a point £ € <<2n + i)w —€, ,(2"7' + %)w + 8)
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at which sin <t2 + %) = 1 and also a point u in the same interval at which

o 1
sin (u‘ + fl-) = —1. But then tf(¢) > 1 —¢ and uf(u) < —~1+e¢. It follows that

the upper limit is 1 and the lower limit is —1. (This argument actually shows
that the limit points of zf(x) fill up the entire interval [—1,1].)

(d) The integral does converge. We observe that for integers N we have

/ ! sin(t®)dt = Y f(k)
0

g N cos(k2) — ¢
_ f(O)‘*‘Zkal'*‘Z (k%) ;s[(k—l—l)]

x
i

b
>

2

N r(k) rcosl _cos[( N+1 N cos(k
= f(0)+k§ +[53 ]+§L;2k(k

- 5
The first sum on the right converges since |r(k)| < 7 and the rest obviously

converges. Hence we will be finished if we show that

T

lim sin(¢?) dt = 0,

where [z] is the integer such that [z] < z < [z] + 1. But this is easily done using
integration by parts. The integral equals

cos((s]?) _ cos(a?) _ / oSt
[

2[z] z2 2)2 4u/?

and this expression obviously tends to zero as £ — co.

Exercise 6.14 Deal similarly with

Show that
e*|f(z)] < 2
and that
e f(z) = cos(e®) — e~ cos(e* ) + r(z),
where |r(z)] < Ce™* for some constant C.
Solution. The arguments are completely analogous to the preceding problem.
The substitution u = e’ changes f(z) into

r+1

f(x):/e sinudu,

@ u
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and then integration by parts yields

1 — cos(e®) 1+ cos(e”)
| ) < flay < 1
We have the equality
' < cosu
e” f(z) = cos(e”) — e~ cos(e® 1) — e“’/ = du,
ez:

and one more integration by parts shows that

ex-l—l
cosu
e* du| <
. u?

In this case f(z) decreases so rapidly that there is no difficulty at all proving
the convergence of the integral.

3

6:1:

Exercise 6.15 Suppose f is a real, continuously differentiable function on [a, b],

f(a) = f(b) =0, and b
/ f3(x) dz =
1

b
[ zt@ @iz =—3

/b[f'(ﬂi)]zdw - /mefQ(x) dz >

Solution. To prove the first assertion we merely integrate by parts, taking u = z,
dv = f(z)f'(z)dz, so that du = dz and v = f%(z). Since v vanishes at both
endpoints, the result is

/bmﬂ 'z ——/ £@)

The second inequality is an immediate consequence of the Schwarz inequality
applied to the two functions zf(z) and f(z).

Prove that

and that

NI
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Exercise 6.16 For 1 < s < 0o, define

((s) = L

(This is Riemann’s zeta function, of great imporfance in the study of the dis-
tribution of prime numbers.) Prove that

(a) ((s) = 8/100 m[i]_l dr

and that

®)  ds)=

where [z] denotes the greatest integer < .

Prove that the integral in (b) converges for-all z > 0. )
Hint: To prove (a) compute the difference between the integral over [1, N]
and the Nth' partial sum of the series that defines ((s).

Solution. (a) Ignoring the author’s advice, we note that
* o N
5/1 o+l dz = SZ”/’L oo+ dx
o0
- Z n[ B (n+ 1) ]

-5l 2lE gl
-y L
n—lns

= ¢(s).

(b) This result is a trivial consequence of (a) and the identity
s * oz
s—1 /1 zs+l da.

Exercise 6.17 Suppose o increases monotonically on [a,b], g is continuous
and g(z) = G'(z) for a < z < b. Prove that

—

3

I
[

?

b b
/ o(x)g(x) dz = G(b)a(b) — Gla)a(a) — / Gda.

" Hint: Take g real, without loss of generality. Given P = {z¢,z1,...,2,},
choose t; € (z;-1,z;) so that g(t;)Az; = G(z;) — G(z;—1). Show that

Za ti)Az; = G(b)a(b) — G(a)a(a) — Z G(zi-1)Aaq;.
_ =1

i==]
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Solution. The identity just given is a trivial consequence of Abel’s method of
rearranging the sums:

az)gt)Az: = Y o) (Glz:) - Glwimy))
i=1 =1
, e
= G(zn)a(zn) — G(zo)a(zo) — > (i) (efzs) — @imr)).
) =1

Now the fact that G(z) is continuous and a is nondecreasing means that the
right-hand side can be made arbitrarily close to

b
G(b)a(b) — G(a)ala) — / G do,

whenever the partition is sufficiently fine. It does not follow immediately that
the function a(x)g(z) is integrable on [a,b]. However, since ¢ is nondecreasing,
its only discontinuties are jumps, and for any given £ > 0 there can be only a
finite number of jumps larger than €. These can be enclosed in a finite number
of open intervals of arbitrarily small length. We can then argue, as in Exercise
6 above, that any partition that is sufficiently fine will have upper and lower
Riemann sums that differ by less than . Hence a(z)g(z) is integrable, and its
integral is given by the stated relation.

Exercise 6.18 Let 1, 72, 73 be curves in the complex plane defined on [0, 27]
by
1n(t) =e", yt) = et 3 (t) = 2mitsin(1/1)

Show that these curves have the same range, that v; and 7, are rectifiable, that -
the length of 7; is 27, that the length of 5 is 47, and that ~3 is not rectifiable.

Solution. Since e has period 27 it is obvious that v1 and 72 have the same
range, namely the set of all complex numbers of absolute value 1. To show that
this is also the range of 73, we need to show that the mapping ¢ — 27t sin(1/t),
0 < ¢ < 2pi, covers an interval of length 27, i.e., that the mapping ¢ ~ tsin(1/t),
0 <t < 27 covers an interval of length 1. (We naturally take the value to be
zero when ¢ = 0.) Since this range is connected, it suffices to find two points a

and b in the range with a —b > 1. We choose those points to be a = f—r (the

—9 _
image of t = &) and b= o (the image of ¢t = ). We have a — b = = > 1
The rectification of 71 and +y, is straightforward:

27
)= [ o) a =2
2r 2n
l(72)=/0 {fyg(t)ldt_—./o 2dt = 4.
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To show that 43 is not rectifiable, we observe that its length would be

2w 2
/ "sin(l/t)—l.cos(l/t){dtz / IM{dt—Qﬂ.
Jo | I3 | jo I 2 [

By making the substitution u = % in this last integral we get

o0 .
71
L U

2w

But we already know that this integral diverges, since

o0 (2n+i)w o0
Z/ 2 cosuduzz_ll___:oo_
n=1"Y2nm U ne1 (2n + 5)71'

Exercise 6.19 Let 7; be a curve in R* defined on la, b]; let ¢ be a continuous
1-1 mapping of [c, d] onto [a,b] such that ¢(c) = a, and define Yo(z) = v1(o(x)).
Prove that 7, is an arc, a closed curve, or a rectifiable curve if and only if the
same is true of v;. Prove that v; and Y2 have the same length.

Solution. We know that ¢ has a continuous 1-1 inverse ¢, and that the com-
position of one-to-one functions is one-to-one. Hence, since 1) = ya(p(x)),
we see that v; and ~y, are both arcs (one-to-one) if either is. Since necessar-
ily ¢(d) = b, we see that y;(a) = 71(b) if and only if y5(c) = v2(d). Hence
both are closed curves if either is. Finally, since ¢ and ¢ establish a one-to-
one correspondence between partitions {s;} of [a,b] and {t:} of [c,d] such that
2mlsi) —nlsic) =5 [v2(t:) = v2(t:—1)], it follows that the two curves have
the same length.



