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Abstract : We review some recent advances in the mathematical modelling and numerical sim-
ulation of polydisperse suspensions of small particles dispersed in a viscous fluid. Such a mixture
contains small particles of multiple species that differ in size or density, and that segregate and
form areas of different composition. In one space dimension, common models that describe
the settling as such mixtures, and that generalize the well-known kinematic theory of sedimenta-
tion [38], can be formulated as systems of first-order nonlinear conservation laws for the unknown
volume fractions as functions of height and time. These models differ in the algebraic form of the
flux vector. One of the models that has received major acceptance through extensive support by
experimental data was proposed by Masliyah [41] and Lockett and Bassoon [40] (“MLB model”).
Several properties of these models are discussed. Of particular theoretical and practical interest is
the property of hyperbolicity, that is, the existence of pairwise distinct real eigenvalues and a full
set of corresponding eigenvectors of the flux Jacobian. This property is related to the stability of
the sedimentation process and allows the implementation of high-resolution numerical schemes
for its simulation. The spectral decomposition required to identify conditions for hyperbolicity
is not available in closed form but can be characterized by the approach of the so-called secu-
lar equation [3, 17]. The MLB and related models have been extended to describe suspensions
forming compressible sediments. In that case, the governing equation is a system of nonlinear de-
generate convection-diffusion type. The numerical solution of such models by explicit schemes is
usually very inefficient due to the severe time step restriction. A more efficient, and still easy-to-
implement alternative are so-called implicit-explicit numerical schemes (“IMEX schemes”) that
treat the convective part by an explicit scheme, and the nonlinear diffusive part by an implicit
scheme [13, 14]. Finally, an outlook on some current developments, and in particular on spatially
multi-dimensional models will be given [22].

1 Introduction

1.1 Scope

We are interested in the process of sedimentation of small solid particles in a viscous fluid under the in-
fluence of gravity, as is illustrated in Figure 1 for a monodisperse suspension, that is, for which the solid
particles have equal size and density. Standard references to simple kinematic models that describe the
settling of such a mixture include [26, 28, 38]. We herein focus on so-called polydisperse suspensions, in
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Fig. 1: Schematic of the sedimentation of a monodisperse suspension of small solid particles in a vis-
cous fluid: (left) suspension at initial solids volume fraction ¢y, (middle left) formation of a clear liquid
(supernatant) region (¢ = 0) and a densely packed sediment (¢ = ¢ ax), Showing a descending suspension-
supernate interface and a rising sediment-suspension interface, which meet at a critical time 7, (middle
right) compaction of the sediment after critical time #.j;, but before the system has attained steady state,
(right) final steady state with particles at rest and sediment at maximum packing solids volume fraction ¢x.

which the solid particles belong to a finite number of classes (species) that have different sizes and densities.
The different species segregate and form areas of different composition. In many applications, a spatially
one-dimensional description of this process, with the space coordinate aligned with the body force (usually
gravity) is sufficient. The mathematical frame of continuum descriptions of that kind is given by first-order
systems of nonlinear conservation laws [11, 17, 21] whenever sediment compressibility is not in effect.
Applications of spatially one-dimensional polydisperse sedimentation models are reviewed in [12]. They
include geophysics [2,30, 31, 50], chemical engineering [1, 43], mineral processing [36], medicine [45],
petroleum engineering [33], wastewater treatment [16,47,51], and other areas. The systems of conservation
laws arising in these applications are of arbitrary size (namely, of V scalar equations for N unknowns, that
is, the N volume fractions ¢y, ..., @y as a function of position x and time ¢ if we distinguish N solid particle
species), but their fluxes are constructed in a systematic way. In some important cases it is the possible to
prove that the resulting system is strictly hyperbolic for equal-density particles [17,19]. The flux Jacobian
does not admit a closed-form eigenstructure, but spectral schemes can still be implemented [18].

For the convective flow of a particulate suspension (e.g., in rivers and estuaries), that is for the de-
scription of vertical sedimentation superposed with a horizonal flow, two- or three-dimensional models
are needes. These are computationally expensive since additional equations of motion need to be solved.
However, certain simplification is possible for suspended sediment transport in shallow regimes, which
can be described by a Saint-Venant or shallow water model combined with passive transport equations for
the different species. We herein consider a related model, namely a multilayer shallow water model for
polydisperse sedimentation.

1.2 Model of polydisperse sedimentation

Let us first consider a multi-dimensional setup, where x denotes spatial position. It is assumed that the
polydisperse suspensions consists of spherical solid particles that belong to N species of sizes d; > -+ > dy
and densities py,..., py with the corresponding volume fractions ¢; = ¢;(x,¢), i = 1,...,N. Moreover, we
define the total solids volume fraction ¢ := @ + --- + ¢n, where it is usually assumed that 0 < ¢ < dnax,
where @nax 18 @ maximum packing density. This description presupposes that the particle sizes are relatively
small, at least with respect to the diameter of the settling vessel, so that a continuum description is adequate



but on the other hand colloidal effects are unimportant. Moreover, it is assumed that the fluid has density p¢
and viscosity ur. If g denotes the acceleration of gravity, then the derived parameters used for the model
formulation are

P ¢
gd2 d2 _ _ . 6 N
L &= py=pien p=| ), s= P |, e=(:

ST P ' on
v

To formulate the balance equations in multiple dimensions, let us assume that j = 0 corresponds to the
fluid and j = 1,..., N to the solid phases. We then obtain

99 +V-(9;v;)) =0, j=0,...,N, (1.1)

V-q=0, (1.2)

Pi(A($v)+V-(9,v;@V))) = —p;djge.—¢;Vp, j=1....N, (1.3)

where v; is the phase velocity of phase j (j = 0,1,...,N), e; is the upward-pointing unit vector, and p is

the pressure. The solids phase velocities are given by

vj=q+v3’[LB(<I>)ez, j=1,...,N,
where v?’ILB is the hindered settling function corresponding to the model introduced independently by

Masliyah [41] and Lockett and Bassoon [40] (“MLB model”), namely
N
VB (D) = pv () |8;(p; —p'®@) — Y. 6¢1(p —p @) |, (1.4)

=1

where V is a given function, sometimes called “hindered settling factor”, that is assumed to satisfy
VI0)=1, V(pma)=0, V'(¢)<0.

Finally, we remark that if the phase velocity v; has a horizontal component u; and a vertical component @,
J=0,...,N, then we assume thatug =u; =--- =uy =: u.

1.3 Special cases

If the particle species have equal density ps (and differ in size only), then (1.4) reduces to
W= v (9)(1— ) (ps —pr)[8;— 87 D] (1.5

Furthermore, in one space dimension, (1.2) implies that q = ¢ is constant, with g = 0 for batch settling.
Thus, for the description of settling in a column of height L we only need to solve the zero-flux initial-
boundary value problem

@+ of(@)=0. (@)= (f;(®)} 1. [i(P)=¢v;(@)

J (BSM)
Bx,0) = Bolx), 0<x <Ly H®)g = HB)ioy = 0.

This is a first-order nonlinear system of conservation laws whose solutions exhibit kinematic shocks (con-
centration discontinuities), in agreement with experimental evidence [46]. This model is discussed in Sec-
tion 2.

On the other hand, if we still consider the one-dimensional case but assume that the sediment is com-
pressible, then the governing model can be written as

AP+ o f(P) = 9, (B(D) D), (DCM)
D(x,0) =dy(x), 0<x<L; f(P)—B(®)dP|—0r =0,



where the term d,(B(®)d, D) describes a diffusive correction (DC) of the original kinematic model (see
[11, 13, 14]). The diffusion matrix B(®) = (f;;(®)); j=1,...n has the structure

Bij(®) = %j(P)0e () + i (P) 0. (¢)

with certain coefficient functions ¥; and ¢;;(®) (whose precise algebraic definition is unimportant here),
and where o, denotes the so-called effective solid stress function that is has the generic property

=0 for¢ < ¢,

(9)] © 1.6
>0 for¢ > ¢, ol(¢) jumps at ¢, 06

Gc(¢)e6é(¢){

corresponding to the assumption that effective solid stress can only be transmitted when the particles are in
permanent contact, which in turn is assumed to occur when the total volume fraction ¢ exceeds a critical
value ¢, sometimes called “gel point”. Clearly, under the assumption (1.6), the partial differential equation
(PDE) in (DCM) is strongly degenerate. In fact, one can show [11] that the PDE of (DCM) is parabolic
wherever (@) is active. This model is discussed in Section 3.

Finally, we consider an alternative formulation based on mass averaging. We define

p=p(P):=podo+p1d1 +- -+ pndy. (1.7

Then the mass average velocity of the mixture

N N N
vim ()T = £ Y. PV = L [(p -) pj¢j) vo+ Y pk‘f’k"k]
P p =1 k=1

m=0

satisfies the global mass balance d,p + V- (pv) = 0. If we define the slip velocities u; := v; — v and the
factor A; := p;¢/p for i =1,...,N, then the solids mass balance equations can be rewritten as

N
9:¢_f+V-(¢f(uj+v—Zl;u;))=03 J=1,....N. (1.8)
I=1

The governing model in final form is

a,o(pj(ﬁj)-f—V‘(pj(ﬂjVj):O, j=1,....N, (1.9
pi(0(@;7))+V-(¢;v;®v,)) =V-T5 —¢;Vp—t;pgk, j=1,....N, (1.10)
AP +V-(pv) =0, (1.11)
where
N
Vi= v+ 9}“‘3(@)65, G?AI“B(CI)) = MV(Qb) [6j(ﬁ] —ﬁTCD) — Zk{ﬁpﬁb‘g(p[ — ﬁTCD) . (112)
I=1

Summing up from 0 to N the equations (1.10) we have

N N
(9;(2,0j$/"j) +V. (E ,Oj(f)jV,‘@Vj) =V.-T—pgk, (1.13)
j=0 j=0

where the stress tensor of the mixture is given by
N
T=Y 7;=—pl+TE
j=0

This model forms the basis of a multilayer shallow water formulation that is discussed in Section 4.



2 Hyperbolicity and characteristic schemes

It is possible to analyze the hyperbolicity for (BSM) and a wide class of models of the settling veloci-
ties v; (including the MLLB model) by the approach of the so-called secular equation [3], see [17, 19, 29],
where we recall that the system of conservation laws

oD+ df(P) =10 2.1
is called hyperbolic at a state @ = Py if at that state, the eigenvalues of the flux Jacobian

(@) = (di/d9))1<ij<n

are all real, and strictly hyperbolic if these are, moreover, pairwise distinct. For polydisperse sedimentation
models, a particular result of the hyperbolicity analysis states that under determined conditions the eigenval-
ues of _#y(P), which are inaccessible in closed form, interlace with the given phase velocities v;. This inter-
lacing property is the basis of characteristic-wise (spectral, as opposed to component-wise) high-resolution
numerical schemes for the approximation of discontinuous solutions of (BSM) (see [18]). It particular it has
turned out that spectral weighted essentially non-oscillatory schemes (WENO schemes; see [35,39,48,53])
are more accurate, and mostly more efficient, than their (easier to implement) component-wise (COMP)
counterparts. Substantial further improvements of efficiency are possible by adaptive techiques, for in-
stance Adaptive Mesh Refinement (AMR) [23].

In the context of polydisperse sedimentation, the hyperbolicity of (2.1) is related to the stability of the
separation of a polydisperse mixture, as is detailed in [8, 21]. Roughly speaking, stability in this context
means that an initially homogeneous mixture of a given initial composition @y segregates under the forma-
tion of horizontal discontinuities and vertical gradients, and that blobs, fingers, and other structures related
to instable separation do not occur. A linear stability analysis applied to (2.1) reveals that these phenomena
are not amplified when _#;(®y) has real eigenvalues only, that is (2.1) is hyperbolic at &. Since on the
other hand, instabilities such as blobs and fingers have been observed for bidisperse mixtures (N = 2) only
when particles with different densities are involved (p; # p2), one should expect that a sound mathematical
model should be be hyperbolic for equal-density particles, arbitrary N and 6y < 1. This was proved in [11]
for the MLB model (precisely, for the version (1.5), (BSM)).

2.1 Secular equation and interlacing property

In many cases, one may exploit the systematic algebraic construction of the velocity functions v; for the
hyperbolicity analysis as follows. Many models (proposed choices of v;(®)) can be written as

vi=vi(pi,--spm)y,  pr=pi(P), m<KN,

i.e., the velocity v; of species i does not depend on each of the NV components ¢, ..., ¢y of ® individually,
but rather on a small number m < N of functions p;(®),..., py(P). One then obtains that _#¢(P) is a

rank-m perturbation of the diagonal matrix D := diag(vy,...,vy). Precisely, one can write

B:=(By) = (¢;9vi/dp;)), 1<ij<N,

=D+BAT,
‘ {A3— Aj)=0p/d9;), 1=sl=m.

The following theorem indicates how this stucture can be exploited to facilitate the location of eigenvalues.
Theorem 2.1 (The secular equation [3]). A number A & {v,...,vy} is an eigenvalue of the matrix D+ BAT
it and only if R(A) = 0 (the “secular equation”), where we define

n “‘i“g””} detA’” detB//
_ Z, bl r-—

T /.. .\
r=1  jclesV jesm H{eu;éf(w Vi)

R(A):=det[I+AT(D—-AI)"'B] =1+ f‘,
i=1

=1 Vi

where SV is the set of all subsets of {1,...,N} with r elements, and S™ is defined analogously.



From Theorem 2.1 one may deduce the following result.

Corollary (Interlacing property). If ¥ - y; > 0 for all i, j, then D +BA" is diagonalizable with real eigenval-
ues Ay,..., Ay. Let 7:= Y | v. Then

My =vw+F<Ay<wvy <Ay_) < - <Ay <y,
v <Ay < vy <Ay << <A <My =y 7

One may easily verify that the MLB model for equal-density particles, as described by (1.5), is a case
of m =2 with 73 < 0 follows easily; thus, in this case (BSM) is strictly hyperbolic for all & > 0. The
eigenvalues satisfy the interlacing property. On the other hand, for the models by Batchelor and Wen [9],
Davis and Gecol [27] and others one can prove definite sign of ¥ only if Sy > Smin.model (85 @max) > 0, that
is for a finite range of particle size ratios. For a given eigenvalue A & {vi,...,vy}, the eigenvectors can be

calculated efficiently when the interlacing property is in effect.

2.2 SPEC-INT and COMP-GLF numerical schemes

We now consider the numerical approximation of discontinuous solutions of (BSM). A conservative, fully
discrete scheme for the computation of 7 ~ ®(x; = (i + §)Ax,t, = nAt) can be written as
At 4 A
‘I)?H = ‘I’? T Ax (fi+1/2 - ffflfz):
?f+1/2 :?(‘I’?—x+1a---,‘1’?+«) s =0, . M—1; ?71/2 = %Mfl/Z =0,

where ﬁ-H /2 is the numerical flux vector associated with the cell interface x;41. In general, the basic idea of
construction of numerical schemes consists in applying an ODE solver (in our case, a third-order Kunge-
Kutta TVD method) to the spatially semi-discretized equations [49].

To compute £, i /2, One may use the eigenstructure of _Z¢(®;/,), where ®;, /5 = (P + Dy 1), given
by the right and left eigenvectors:

- T
Ri+]/2 = [l'r'+x/2,|:~-:l't+l/2,NL (Ri+ll/2) = [li+l/2,]v---:lf+l/2,N]'
From a local flux splitting

AP = £ Fea (D) 20, @xDyypn, k=1,....N,

we can define gjifk = l;r_H 12k S S 4), and use upwind-biased reconstructions Z* (e.g., the WENO
method), to calculate

i

fiip=RiiijoBiin=Y &i1/24Ti1/2u-
=1

The component-wise global Lax-Friedrichs (COMP-GLF) scheme is based on the alternative of setting
R, ;12 = Iy, where Iy is the N x N identity matrix, and utilizing a global flux splitting f~ 4 f* = f, where
+A(_Zp= (P)) > 0 for all k. This results in the choice

gt = et (@) = (@),

which leads to a high-order extension of the Lax-Fiedrichs scheme.

A more sophisticated scheme is based on spectral properties of the flux Jacobian in conjunction with
the interlacing property (Corollary 2.1), to which we refer as SPEC-INT scheme. To outline it, we assume
that ., 1> is the segment joining states ®; and ;1. If A( Zp(P)) > O (resp., < 0) on %, /> then we
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Fig. 2: Example 1 (settling of a suspension of N = 4 solid species): reference solution with M = M.; = 6400
at simulated times t = 50s and ¢t = 3005 [18].

upwind (no need for flux splitting). However, if 4;(_#;(®)) changes sign on #;, /,, then we use a local
Lax-Friedrichs flux splitting with numerical viscosity parameter :

!
5(@) = (@) L oy ®, o > max |4 (D).
PSS
The computation of this parameter depends decisively on the result of Corollary 2.1. While by preliminary
tests it had turned out that the amount of numerical viscosity is insufficient for the usual choice

oy = max{ | A (Zr(Pi) |, [ Ar(Pii1)) |},

much better results in terms of resolution an efficiency have been obtained by exploiting the interlacing
property stated in the corollary. For example, for the MLB model with equal-density particles the interlacing
property provides the easily computable bound

max  |A (D) < oy = max{q) max  |v(®)|,

max (Vi (P)| ;.
DS €51 DS, ‘ e )}

i+1/2

This choice of o, .., oy defines the scheme SPEC-INT.

2.3 Numerical experiments

We here present some selected numerical examples from [18] and [23]. We refer to these papers for a
detailed presentation and broader discussion. In Example 1, we consider a suspension of N = 4 equal-
density particle species with the normalized sizes d| = 1, d» = 0.8, d3 = 0.6, and dy = 0.4, and set Ppax =
0.6. The initial composition is qb,o =0.05fori=1,...,4. Numerical results are shown in Figures 2 and 3.

Example 2 is motivated by data from [31] and concerns the settling of a suspenson with N = 7 solid
species (size classes). We consider the parameters ¢pax = 0.6 and the hindered settling factor V(¢) =
(1 —¢)3. The initial conditions (pED , real particle sizes d;, and normalized squared particle sizes &; are given
here:

i 1 2 3 4 5 6 7
#110721  0.2365 1.1039 3.5668 3.8776 6.0436 10.890 4.2718

d;[107°m] 290 250 210 170 130 90 50
5 1.0000 0.7432  0.5244 0.3436 0.2010 0.0963 0.0297

We use Adaptive Mesh Refinement (AMR) to locally enhance resolution and efficiency. The final scheme
is named SPEC-INT-AMR. Numerical results from [23] are shown in Figures 4 and 5.
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Fig. 3: Example 1 (settling of a suspension of N = 4 solid species): solution for ¢ and ¢4 with M = 400 at
simulated time = 505 [18].

06

Fig. 4: Example 2 (settling of a suspension of N = 7 solid species): numerical solutionx at r = 400s and
t = 2500s obtained by SPEC-INT-AMR with L+ 1 = 6 levels; the coarsest grid has 50 subintervals [23].

3 Implicit-explicit (IMEX) methods for a diffusively corrected model

The diffusively corrected model (including the effect of sediment compressibility) leads to a strongly de-
generate hyperbolic-parabolic system of PDEs (DCM). Explicit schemes applied to the model require the

strong stability step size constraint
05ﬂ + A <1
Ax Ax2 =7
which is avoided by so-called implicit-explicit Runge-Kutta (IMEX-RK) discretizations that are implicit
for diffusive term and explicit for the convective term, both of the semi-discrete (spatially discretized)
formulation. In [24] the authors developed a new nonlinear solver for the regularization of the algebraic
systems arising with IMEX methods. Alternatively, one can design linearly implicit (less accurate, but

easier to implement) IMEX-RK schemes to solve the problem [13, 14].

3.1 Spatial discretization

The spatial discretization of (DCM) is achieved through discretizing o, f(®) discretized by A%,(A’ (@),
where the numerical flux is a fifth-order WENO reconstructions of characteristic fluxes (WENO-SPEC or
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Fig. 5: Example 2 (settling of a suspension of N = 7 solid species): approximate L' errors versus CPU
time for SPEC-INT-AMR and COMP-GLF-AMR at ¢t = 2500s. The referece solution was computed with
SPEC-INT on a fixed grid with 12800 subintervals [23].

SPEC-INT, see Section 2.2 and [18]). Moreover, d;(B(®)d.P) is discretized by a standard second-order
scheme, i.e.,

9 (B(®)h®) (xi,1) (Bio1/2®i 1 — (Bi1j2 +Bip1/2)®i+ By o Piy1) (1),

A2
1
Biii)= E(B(q)f) +B(®.1)), ilt) = P(x;,1) € RY;

Modifications to these formulas apply for i = 1 and i = M to account for boundary conditions. BCs. For
O = (Py,...,0y)" € RMV, we can now define the M x M block tridiagonal matrix % = Z#(®), with blocks
of size N x N, as &, ; = —(Bz_1/2 + BH—I/Z)! Bii-1 = B;_i /2, etc.

3.2 Time discretization

Within Semi-implicit IMEX-RK schemes, the convective term is treated explicitly, and the diffusive term
is treated implicitly. One combines explicit Runge-Kutta (ERK) scheme with a diagonally implicit Runge-
Kutta (DIRK) scheme to handle the former and the latter, respectively. Both schemes are assumed to be
given by the usual Butcher arrays, that is
¢ A c| A
= s-stage ERK, = s-stage DIRK.
RT BT

A common example is the second-order scheme IMEX-SSP2(3,3,2) (see [34]):
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Nonlinearly implicit IMEX-RK (NI-IMEX-RK) methods (as studied in [24]) are based on the semidis-
crete formulation rewritten as follows:

dd
= =C(@)+D(®),
C®)i=— (A N)®), D)= B@)P,

where C(®) and D(®) represent the spatial discretizations of the convective and diffusive parts of (DCM),
respectively. For this setting the simplest IMEX scheme is
At At
P = " — — (A ) (D) + 5 B,
(A + o B@
where " =~ ®(¢"). For general pairs of RK schemes, the computations of a NI-IMEX-RK scheme necessary
to advance an @" from time ¢" to t"*! = " + A are given in the following algorithm:
Input: approximate solution vector " fort =1,
doi=1,...,s

solve for @) the nonlinear equation

i1 i1
o) = " + Az (Z aijK;+agD(®7) + Y éij[?j)
J=1 J=1

K; « D(®Y), K; + C(d)
enddo

$ s
P + At Z ijj*FAI Zfﬂjkj
J=1 j=1

Output: approximate solution vector ®"*! for r = "7 =" + Ar.
This algorithm [4] requires in each step solving a nonlinear system of the type
Yi(u) :=u—a;AD(u) —1; =0, i=1,...,s, 3.1

foru =@ € RMN where

i-1 i—1
['j=q)n+Al(Z(linj+ &Uf(j)
j=1 j=1
To apply the standard Newton-Raphson iterative method, one must require that the function B or Z# is at
least of class C'. However, our degenerate model does not naturally satisfy this assumption. To this end,
we devised NI-IMEX-RK schemes [24] that are based on replacing B by smooth approximation B¢ (and
% by B.), where B, — B and &, — % as € — 0. One then applies a nonlinear solver combined with
smoothing and a damped Newton-Raphson method with line search strategy (see [24] for details).
The necesessity to solve nonlinear algebraic systems within each IMEX step circumvented by linearly
implicit Runge-Kutta methods (LI-IMEX-RK methods). To formulate them, we start from the semidiscrete
formulation in the form

do
C) = —— (A (@), DO ) = — B,

Ax CA?
where we distinguish between stiff and nonstiff dependence on @ in the spatially discretized form 2 (®*, ®)
of the diffusion term. We write
do

o = @)+ D@ @) = A (@7, ),
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Fig. 6: Example 3 (settling of a tridisperse suspension (N = 3), including the effect of sediment com-
pressibility): (left) numerical results by LI-IMEX-SSP2 at simulated time T = 4000s, (right) enlarged

view [13,14].

where @™ is treated explicitly as argument of f and 48, while & is implicit in the term to which & is applied.
The simplest first-order LI-IMEX-RK scheme is then given by

At At
q)n-H B A~ (oL B(P" q)rH-I )
T A N@")+ 5@
In the general case, a linearly implicit IMEX-RK scheme is defined by the following algorithm:

Input: approximate solution vector " for r = ¢"

doi=1,....s
i1 i—1

@) D"+ At Zﬁijj, q’\)(i) — "+ Ar Z a;;K;
Jj=1 J=1

solve for K; the linear equation

K = cg(q)*(i)) n ﬁ@(qf(z’)) ((i)(i) +AtaK;), (%)
enddo
q)n+1 — (I)n +AI Z b‘-K/ (**)
j=1

Output: approximate solution vector @"*! fort = ™! = " + Ar.

The property @*" ! = @"+! i guaranteed for b; = b; fori = 1,...,s [15].

3.3 Numerical experiments

We compare numerical results with those obtained from the well-known explicit Kurganov-Tadmor (KT)
scheme [37]. We set Ax = L/M and in each iteration, the time step At is determined by
A P At ) ny
A M2 P (A (@) + 505 max p(B(®])) = Can,
for the KT scheme and
At

ax M P (A (@) = Can,
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Fig. 7: Example 3 (settling of a tridisperse suspension (N = 3), including the effect of sediment compress-
ibility): numerical solution at simulated time 7" = 4000s, efficiency plot based on numerical results for
Ax = 1/M with M = 100, 200, 400, 800 and 1600 [13, 14].

for the semi-implicit schemes, where p(-) is the spectral radius, In the numerical examples we choose Cep,
as the largest multiple of 0.05 that yields oscillation-free numerical solutions. In all cases, the reference
solution for numerical tests is computed by the KT scheme with My = 25600. The numerical examples
are based on the results of [13, 14].

In Example 3 we consider N = 3 and focus on the comparison of LI- and NI-IMEX-SSP2 schemes,
based on using the model parameters @max = 0.66, npz = 4.7, 6o = 180Pa, ¢ = 0.2, k=2, yuy = 103 Pas,
d=1.19x107m, p, = 1800kg/m?, and g = 9.81 m/s>. The initial concentration is ® = (0.04,0.04,0.04)T
in a vessel of height . = 1m with 8 = (1,0.5,0.25)™. For the nonlinearly implicit scheme, NI-IMEX-
SSP2, the regularization is achieved by utilizing

0u(9;€) = o () exp(—€/ (9 — c)*), €>0,

where € decreases gradually from &y = 10™% to €min = 1079, tol = 1078, The schemes LI-IMEX-SSP2 and
KT do not include regularization of the diffusive term. For the schemes NI-IMEX-SSP2 and LI-IMEX-
SSP2, we set Cen, = 0.7, and for KT, Cen, = 0.25. The scheme LI-IMEX-SSP2-reg consists in applying the
scheme LI-IMEX-SSP2 to the regularized diffusion term with &p;, = 10-9.

In Example 4 we again consider N = 3 and the parameters d; = 1.0, d» = 0.8 and d3 = 0.7, with a
smooth initial concentration profile ¢;(x) = 0.12exp(—200(x — 0.5)?). The numerical results produced by
the scheme LI-IMEX-SSP2-reg with M = 1600 are taken at 7 = 20s (when the solution profiles are still
smooths) and T = 500s (after discontinuities have formed). The corresponding numerical errors are given
here [13]:
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Fig. 8: Example 4: (settling of a tridisperse suspension (N = 3), including the effect of sediment com-
pressibility, smooth initial datum): numerical results produced by LI-IMEX-SSP2-reg with M = 1600 at
simulated times (left) 7 = 20s and (right) T = 500s [13].

T=20s T =500s
based on reference soln. | based on interpolation | based on reference soln.

M| ep(T) 6 (T) ou(T) T e (T) 6 (T)

50 1.38e-04 0.14 -0.33 8.41e-05 2.27e-03 1.59
100 | 1.25e-04 1.45 1.48 1.06e-04 7.49e-04 0.95
200 | 4.58e-05 1.80 1.68 3.80e-05 3.86e-04 1.11
400 | 1.30e-05 1.88 1.76 1.19e-05 1.78e-04 0.91
800 | 3.54e-06 1.87 1.87 3.52e-06 9.49e-05 1.05
1600 | 9.66e-07 2.00 1.98 9.63e-07 4.56e-05 1.01
3200 | 2.40e-07 2.06 — 2.44e-07 2.26e-05 1.01
6400 | 5.73e-08 — — — 1.12e-05 —

4 A multilayer shallow water system of polydisperse sedimentation

4.1 Model formulation

Models for the settling of a polydisperse suspensions in two or three space dimensions are usually given
by (1.1)-(1.3) or a similar coupled transport-flow problem. Roughly speaking, such problems are defined
by a transport equation (for the solids concentrations) strongly coupled to a version of the Navier-Stokes
equation for the mixture velocity and the pressure. Since the computational effort to solve these multi-
dimensional coupled problems is considerable, one seeks to define easier-to-solve lower-dimensional mod-
els. The well-known Saint-Venant (shallow water) approach is based on a vertically integrated version of
the flow equations that can be applied when vertical fluctuations of variables are negligible.

To handle mostly horizontal flows combined with polydisperse sedimentation, a new computational
multilayer Saint-Venant approach was developed [32] and recently modified [20]. In general, a multilayer
Saint-Venant model is less expensive than the full 3D model from the computational point of view, but still
keeps information on the vertical distribution of the mixture. Such an approach (as opposed to a standard
single-layer approach) is appropriate in the presence large friction coefficients, significant water depth, or
wind effects [6,7,44]. This approach results in a number of coupled Saint-Venant system, one for each
layer [5], see Figure 9.

The steps of the formulation of the final solvable multiplayer model are fairly complicated [32]. They
include integrating the balance equations for the solid and liquid phases over each layer, neglecting vertical
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Fig. 9: Multilayer approach for one horizontal and one vertical space dimension (coordinates x and z,
respectively) [20].

fluctuations of horizontal velocities and concentrations inside each layer, and assuming that the pressure is
hydrostatic. We assume that the suspension body is subdivided into M layers. Furthermore, if i = h(x,t)
denotes the total height of the suspension body at horizontal position x at time ¢, then we assume that the
height of layer &, ot = 1,..., M, is a fixed fraction [y of A, such that hy = lghforly >0, a=1,.... M,
with Iy + -+ + 1y = 1. We assume that the bottom and surface heights are zg := z|/5 and zg := zZy41/2,
such that A = zg —zg = hy + -+ + hy. (again, see Figure 9). The governing model can then be written
as follows, where ot = 1,...,M counts the layer under consideration and j = 1,....N indicates the solid
particle species:

r:
atrj‘a-i‘ax( j.aqa)

Mg

| - o= = .
= l—(ff’j,aﬂ/zGaH/z —j.6-12Ga_1/2) — f_j(fj,aJrl/Z ~fja-12)s J=1,...,N,
o o

ds g &
ar‘]a+ax(nf +h(PS+zlama+g 2 lﬁmﬁ
o

Prl® (@.1)

M

L _

= (Ps +g Y lﬁmﬁ) dch — gmgdxzp — gMmaly10ch + o (Fqs12Gas1/2 —lig—12Ga1/2);
B=a+1 o

M
3fﬁ1+9x(z lﬁqﬁ) =Gyy12—Grjp, mi=h
p=1

M=

M
pﬁlﬁ = ﬁzl lﬁmﬁ.

Here py,...,pn are the densities of the solid species, py is the density of the fluid, g is the acceleration of
gravity, ¢; o, denotes the volume fraction of species j in layer @, r; o := pj¢; of1, it is the horizontal velocity
of the mixture in layer ¢, Po := PoPo,o +P191,0 +- - + PPy« 15 the density of layer &, go := palite, and
Mg 1= Pah. Moreover,

- L{ga+1 | 4 = L{rjas | 1)
Ug1/2 525( o +—a)-, @jat1/2 325( — +ﬂ>,

Mg+1 Mg Ma+1 Mg,

and G o2 are intra-layer mass fluxes defined inter alia by the modified MLB velocities. The model that
is eventually solved can be written as a balance equation involving non-conservative products,

oW+ o F (W) = (w,ow) + % (w,dw),

= T
w=(m7q1:"'Jqurl.lv'"7rN,|7"'3“'7r1,M:"':rN.M) 3
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Fig. 10: Example 5: Concentration of ¢; by color in a domain with a bump, 1(x) = zp(x) + A(x) m, at
simulated times T = 0s, 20s, 505, 100s, 500s and 7 = 1000s.

for whose numerical solution specialized numerical methods are available.

4.2 Numerical experiments

In the present numerical simulation we have used the global constants g = 9.8 m/s? (acceleration of gravity),
Pmax = 0.68, and we have employed the Richardson-Zaki hindered settling factor with ngz = 4.7, viscosity
and density of the pure fluid are uy = 0.02416Pas and py = 1208kg/m?, respectively, and we are assumed
that the all species have the same density p; = p = p3 = 2790kg/m>.

The (horizontal) x-interval [0, ] has been discretized into C subintervals [x;_ 2, Xi41/2] = [(i — 1) Ax, iAx]
of length Ax = L/C, centered at x; = (i — 1/2)Ax, i = 1,...,C, and in the vertical direction we have used
M = 10 layers. Finally, we use

% l‘gl?lsxcmax{\skm/z\: ISL.it1/2]} = Cens

as Ceq condition, where Sg ;11,2 and S ;, 1, are the bounds of the eigenvalues. Here we have considered
Cen = 0.5.

In this numerical test we simulate polidisperse sedimentation process over a horizontal channel with
a bump of length L = 1m. We use N = 3 solids species dispersed in a viscous fluid with diameters d; =
4.96 x 107*m, dy = 1.25 x 107*m, d3 = 1.0 x 10~*m respectively. The bottom elevation is given by
zg(x) = 0.2exp(—40(x — 0.5)%) m for x € [0, L], the initial condition for the height is h(r = 0) = 0.3 — zp,
and for the concentration of each species

M
Oiq = % Z ¢;(0,x) foralli=1,...,3, ug(0,x) =0 foralla=1,....Mandallx € [0,L],
p=t

with i, 91 5(0,%) = 0.05, gL ¢ 5(0,x) = 0.025, T4, ¢3,5(0,x) = 0.01. The sediment concentrations
are vertically uniformly distributed at each point x. We use a closed basin as boundary condition.
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Fig. 11: Example 6: Concentration of ¢, by color in a domain with a bump, 1(x) = zg(x) + &(x)m, at
simulated times 7' = 0s, 20s, 505, 100s, 500s and T = 1000s.

In Figure 10-12 we can see the concentrations of the each solid species @p, ¢», @3 respectively. The
behavior of the particles of the different species is what we expected, the bigger particles are deposited
faster than other particles over the bottom, in this case to both sides of the bump, where we can find high
concentration of species 1 (¢ ) in short time, as we can see in Figures 10 (a)—(f). The others smaller particles
initially remain in suspension, but at larger simulated times these particles begin to settle and position itself
in places where the concentration of species 1 is small (see Figures 11,12). Finally the global behavior of
all particles dispersed in the fluid (the sum of the concentrations of the all species) and the velocity field is
displayed in Figure 13, in this picture, we can see how these are deposited on the bottom in both side of the
bump and also as some particles of species 2 and species 3 are kept in suspension in small concentration
yet. In the same figure we show the velocity field of the mixture and its magnitude, which is a consequence
of the particles movement. Recirculations appear to both sides of the bump too. In the first times high
velocities appear avoiding that some particles settle rapidly. At larger times the velocity decreases and the
particles settle.

5 Conclusions

To conclude this contribution, we mention that the issue of hyperbolicity, outlined in Section 2, is still
an open problem for some important models of polydisperse sedimentation, including the model by Pat-
wardhan and Tien [42] which is supported by some experimental evidence. On the other hand, the schemes
developed for one-dimensional sedimentation can also be applied to other models, for instance to mult-class
extensions of the well-known Lighthill-Whitham-Richards kinematic traffic model (see [10,52]). The latter
models form a case of the theory of Section 2 for m = 1, and admit a separable entropy so that even entropy-
stable schemes can be defined [25]. However, no entropy function is known for polydisperse sedimentation
models shown here. The mathematical theory is still incomplete.

No well-posedness theory is available for strongly degenerate convection-diffusion systems of the type
(DCM). In fact, the IMEX-RK approach is justified by convergence of the scheme to the same solutions
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Fig. 12: Example 7: Concentration of ¢; by color in a domain with a bump, 17(x) = zg(x) + 2(x) m, at
simulated times 7 = 0s, 20s, 50s, 100s, 500s and T = 1000s.

that are approximate by the KT scheme.

We metion that the multilayer shallow water system for polydisperse sedimentation is currently being
extended to two horizontal space dimensions. The current model should be furthermore be refined by
mechanisms of sediment erosion and variation of topography due to sediment deposit.
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